
Lecture 9 - Iterative methods

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

DDA 4230 Resources

Check our course page. Please post your question on the discussion

board in the BlackBoard (BB) system.

• Step 1: Search for existing questions.

• Step 2: Create a thread.

• Step 3: Post your question.

Course Page Link (all the course relevant materials will be posted here):

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

2 / 13

https://bb.cuhk.edu.cn/
https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

Recap: Discrete-time Markov Decision Process (MDP)

Discrete-time Markov decision process (MDP), denoted as the tuple (S,A,T ,R,ρ0,γ).

• S the state space;

• A the action space. A can depend on the state s for s ∈ S;

• PT : S ×A→∆(S) the environment transition probability function;

• PR : S ×A→∆(R) the reward function;

• ρ0 ∈∆(S) the initial state distribution;

• γ ∈ [0,1] the discount factor.

Note that ∆(X) denotes the set of all distributions over set X .

3 / 13

Recap: Discrete-time Markov Decision Process (MDP)

A stationary MDP follows for t = 0,1, . . . as below, starting with s0 ∼ ρ0.

• The agent observes the current state st ;

• The agent chooses an action at ∼ π(at | st);

• The agent receives the reward rt ∼ PR(st ,at);

• The environment transitions to a subsequent state according to the Markovian

dynamics st+1 ∼ PT (st ,at).

This process generates the sequence s0,a0, r0,s1, . . . indefinitely. The sequence up to

time t is defined as the trajectory indexed by t, as τt = (s0,a0, r0,s1, . . . , rt).

3 / 13

Recap: Discrete-time Markov Decision Process (MDP)

The goal is to optimize the expected discounted cumulative return

Est ,at ,rt ,t≥0 [R0] = Est ,at ,rt ,t≥0
[∞∑
t=0

γ
trt

]
over the agent’s policy π.

3 / 13

Policy Evaluation

Policy Evaluation (PE): compute the value function given a fixed policy.

4 / 13

Recap: The Bellman Equation

• State-value Bellman equation (named after Richard E. Bellman):

V (st) = E [rt + γV (st+1)] and V (sT) = E [rT] .

for non-terminal and terminal states, respectively.

• Action-value Bellman equation:

Q(st ,at) = E [rt + γQ(st+1,a) | a∼ π(a | st+1)] and Q(sT ,aT) = E [rT]

for non-terminal and terminal states, respectively.

5 / 13

Iterative Policy Evaluation
The iterative policy evaluation algorithm constructs a contraction when γ < 1, which

gives an arbitrarily close value function estimation of a given policy.

• The update V (s) =
∑

a π(a | s)
∑

s ′,r P(s ′, r | s,a) [r + γV (s ′)] forms a contraction,

such that given V ,V ′, ∥BV −BV ′∥∞ ≤ ∥V −V ′∥∞ where B denotes the operator.

6 / 13

Iterative Policy Evaluation
The iterative policy evaluation algorithm constructs a contraction when γ < 1, which

gives an arbitrarily close value function estimation of a given policy.

• similarly, we can replace the "state-value Bellman equation" with the "action-value

Bellman equation".

6 / 13

Iterative Policy Evaluation
Application: Player evaluation in Sports Analytics. Players are rated by their observed

performance over a set of games. Given dynamic game tracking data:

• Apply policy evaluation to estimate the value function V (s) and the action value

function Q(s,a).

• Compute the player evaluation metric based on the aggregated impact (GIM, i.e.,

advantages) of their actions over the entire game or season.

6 / 13

Iterative Policy Evaluation
Temporal visualization of Q values over a game:

6 / 13

Dynamic programming

For a finite horizon MDP, the iterative policy evaluation algorithm requires the

iteration to go through the index with a non-stationary value function. This process is

known as dynamic programming. By the Bellman equation,

Vt(s) = R(s)+ γ

∑
s ′∈S

P(s ′ | s,π)Vt+1(s
′) , ∀ t = 0, . . . ,H−1 ,

VT (s) = 0 .
(1)

For episodic MDPs, R and P can be stochastic and we run this process for many

episodes (usually denoted as T/H episodes with horizon H).

7 / 13

Dynamic programming

7 / 13

Iterative Policy Search
The policy evaluation algorithm immediately renders itself to a brute force algorithm

called policy search to find the optimal value function V ∗ and an optimal policy π∗.

• The input is an infinite horizon MDPM= (S,A,P,R,γ) with arbitrary initial

state distribution ρ0 and a tolerance ε for accuracy of policy evaluation,

8 / 13

Iterative Policy Search

The policy evaluation algorithm immediately renders itself to a brute force algorithm

called policy search to find the optimal value function V ∗ and an optimal policy π∗.

• The Algorithm terminates as it checks all |Π|= |A||S| =mn deterministic

stationary policies (Recall that we are assuming that there exists an optimal policy

and in this case there is a deterministic stationary policy that is optimal).

• The run-time complexity of this algorithm is O(|A||S|).

Lemma
Policy Search returns the optimal value function and an optimal policy when ε = 0.

8 / 13

Recap: The Bellman Optimality Equation

The Bellman optimality equation, named after Richard E. Bellman, is a necessary

condition for a value function to be optimal:

V ∗(st) = max
a

E [rt + γV ∗(st+1) | at = a] .

The Bellman optimality equation ̸= The Bellman equation.

• The Bellman equation describes an arbitrary policy’s value function

V (st) = E[rt + γV (st+1)] (expected w.r.t. π(at |st)).

• The Bellman optimality equation takes the maximum overall actions (no policy in

the expectation).

9 / 13

Recap: The Bellman Optimality Equation
Can we try iterative policy evaluation and improvement?

9 / 13

Policy Iteration
The policy iteration algorithm applies the Bellman operator (Bellman optimality

equation and Bellman equation), which shows that given any stationary policy π, we

can find a deterministic stationary policy that is no worse than the existing policy.

The output of Algorithm 4 is at least as good

as the policy π corresponding to the input

value function V π , and represents a greedy

attempt to improve the policy.
10 / 13

Policy Iteration

Lemma
Consider an infinite horizon MDP with γ < 1. The following statements hold.

1. When Algorithm 5 is run with ε = 0, it finds the optimal value function and an

optimal policy.

2. If the policy does not change during a policy improvement step, then the policy

cannot improve in future iterations.

3. The value functions corresponding to the policies in each iteration of the algorithm

form a non-decreasing sequence for every s ∈ S .

10 / 13

Policy Iteration

Policy iteration in Grid World.

10 / 13

https://gibberblot.github.io/rl-notes/single-agent/policy-iteration.html

Recap: The Bellman Optimality Equation

The Bellman optimality equation, named after Richard E. Bellman, is a necessary

condition for a value function to be optimal:

V ∗(st) = max
a

E [rt + γV ∗(st+1) | at = a] .

Value Iteration (VI). If we replace V ∗ by a not-necessarily optimal value function V ,

VI assigns RHS to V and repeats the iteration:

V (st)←max
a

E [rt + γV (st+1) | at = a] .

This leads to improvements of the current value for each iteration and V will converge

to the optimal value function under some conditions.

11 / 13

Value Iteration

Value Iteration computes the optimal value function and an optimal policy given a

known MDP. For every element V ∈ Rn the Bellman optimality backup operator B∗ is

defined as:

(B∗V)(s) = max
a∈A

[
R(s,a)+ γ

∑
s ′∈S

P(s ′ | s,a)V (s ′)

]
, ∀ s ∈ S . (1)

12 / 13

Value Iteration

Theorem
For an MDP with γ < 1, let the fixed point of the Bellman optimality backup operator

B∗ be denoted by V ∗ ∈ Rn. Then the policy given by

π
∗(s) = argmax

a∈A

[
R(s,a)+ γ

∑
s ′∈S

P(s ′ | s,a)V ∗(s ′)

]
, ∀ s ∈ S (1)

will be a stationary deterministic policy. The value function of this policy V π∗ satisfies

the identity V π∗ = V ∗, and V ∗ is also the fixed point of the operator Bπ∗ .

12 / 13

Value Iteration
The above theorem suggests a straightforward way to calculate the optimal value

function V ∗ and an optimal policy π∗. The idea is to run fixed point iterations to find

the fixed point of B∗. Once we have V ∗, an optimal policy π∗ can be extracted using

the argmax operator in the Bellman optimality equation.

12 / 13

Value Iteration

Value Iteration in Grid World.

12 / 13

https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html

Question and Answering (Q&A)

13 / 13

