Lecture 9 - Iterative methods

Guiliang Liu
The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

DDA 4230 Resources

Check our course page. Please post your question on the discussion

board in the BlackBoard (BB) system.
® Step 1: Search for existing questions.
® Step 2: Create a thread.

e Step 3: Post your question.

Course Page Link (all the course relevant materials will be posted here):

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html
B) ==+ x5k

cHrt The Chinese University of Hong Kong, Shenzhen

3

2/13

https://bb.cuhk.edu.cn/
https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

Recap: Discrete-time Markov Decision Process (MDP)

Discrete-time Markov decision process (MDP), denoted as the tuple (S,.A4,7,R,po,7)-
® S the state space;

e A the action space. A can depend on the state s for s € S;

Pr:S8 x A — A(S) the environment transition probability function;
Pr : S x A— A(R) the reward function;

po € A(S) the initial state distribution;
e y€[0,1] the discount factor.

Note that A(X') denotes the set of all distributions over set l'}? FRP LA SR

c 154- The Chinese University of Hong Kong, Shenzhen

)

0

3/13

Recap: Discrete-time Markov Decision Process (MDP)

A stationary MDP follows for t =0,1,... as below, starting with sy ~ po.
® The agent observes the current state s;;
® The agent chooses an action a; ~ m(a¢ | s¢);
® The agent receives the reward ri ~ Pgr(st,at);
® The environment transitions to a subsequent state according to the Markovian
dynamics si11 ~ Py (st, at).
This process generates the sequence sy, ag, fo, 51, ... indefinitely. The sequence up to

time t is defined as the trajectory indexed by t, as 7; = (so,ao, gy SLs - - T re).
%‘%#’xk%m@n]

<N The Chinese University of Hong Kong, Shenzhen

3/13

Recap: Discrete-time Markov Decision Process (MDP)

The goal is to optimize the expected discounted cumulative return
Est,af,r:,tZO [RO] = Eshatarhtzo [Z ytrt]
t=0

over the agent’s policy 7.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

3/13

Policy Evaluation

Policy Evaluation (PE): compute the value function given a fixed policy.

Environment

Policy

/
I
! | Reward (t=0)
| | Reward (t=1)
! | Reward (t=2)

uonoy

1| Average Reward

/I

Agent

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

4/13

Recap: The Bellman Equation

e State-value Bellman equation (named after Richard E. Bellman):
V(st) =E[re+7V(st+1)] and V(st) =E[rr].

for non-terminal and terminal states, respectively.

e Action-value Bellman equation:
Q(st;ae) =E[re +vQ(st41,a) [a~m(a| se41)] and Q(st,ar) =E[rr]
for non-terminal and terminal states, respectively.
HEP K FEEID

The Chinese University of Hong Kong, Shenzhen

5/13

lterative Policy Evaluation
The iterative policy evaluation algorithm constructs a contraction when v < 1, which
gives an arbitrarily close value function estimation of a given policy.
® The update V(s) =3 7(a|s)> ., P(s',r|s,a)[r+yV(s')] forms a contraction,
such that given V,V’, ||BV — BV'|| < ||V — V'||ec where B denotes the operator.

Algorithm 1: Iterative policy evaluation
Input: Policy 7, threshold € > 0
Output: Value function estimation V =~ V7™
Initialize A > € and V arbitrarily
while A > e do

A=0
for s € S do
v="V(s)
V(S) = Za 7r(a | S) Zs’,r]P(Slv'r | S,CL) [7‘ + ")/V(SI)] 17%54 HHEF K ECREI
A= maX(A, I'U - V(S)l) &,’gq;‘,‘.% The Chinese University of Hong Kong, Shenzhen

6/13

lterative Policy Evaluation
The iterative policy evaluation algorithm constructs a contraction when v < 1, which
gives an arbitrarily close value function estimation of a given policy.
® similarly, we can replace the "state-value Bellman equation" with the "action-value

Bellman equation".

Algorithm 2: Iterative policy evaluation
Input: Policy 7, threshold € > 0
Output: Action-Value function estimation Q ~ Q™
Initialize A > € and V arbitrarily
while A > ¢ do
A=0
for (s,a) € S x A do
\; q= Q(S) a‘)

Q(s,0) =Xy B(s',7 | 5,0) [r +y X m(a’ | $)Q(s',)] &R P XX S CRAD

The Chinese University of Hong Kong, Shenzhen

A =max(A, |g — Q(s,a)|)

6/13

lterative Policy Evaluation
Application: Player evaluation in Sports Analytics. Players are rated by their observed
performance over a set of games. Given dynamic game tracking data:
® Apply policy evaluation to estimate the value function V/(s) and the action value
function Q(s, a).

e Compute the player evaluation metric based on the aggregated impact (GIM, i.e.,

advantages) of their actions over the entire game or season.

Evaluate Players
3

Deep RL Model

NHL Estimate Compute

E X b3l
Dataset Qls, a) GIM P LK FGRID

: Chinese University of Hong Kong, Shenzhen

6/13

lterative Policy Evaluation

Temporal visualization of Q values over a game:

Value of Q(s,a)

1.0

0.0

L ANTea

Penguins Scored —

Penguins passed arc
Blue Jackets’ goal, shot

gy

<+—Blue Jackets Scored

Game ended

Blue Jackets
advantages, tried
lots of shots

ound

H H 1
.—— Q for Home (Blue Jackets)
%<’ ___Q for Away (Penguins)

Q for Neither (Game End)

2400

2600

2800 3000 3200
Game Time (Seconds)

3400 3600

A& T XK ZCRID
The Chinese University of Hong Kong, Shenzhen

6/13

Dynamic programming

For a finite horizon MDP, the iterative policy evaluation algorithm requires the
iteration to go through the index with a non-stationary value function. This process is

known as dynamic programming. By the Bellman equation,

Vi(s) = R(s)+ 1) _P(s'| 5,m)Veya(s') , VE=0,...,H-1,
s'eS (]_)
VT(S)IO.

For episodic MDPs, R and IP can be stochastic and we run this process for many

g

Y.
ety

episodes (usually denoted as T /H episodes with horizon H).

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

7/13

Dynamic programming

Algorithm 2: Iterative policy evaluation with finite horizon

Input: S,P,R,T

For all states s € S, Vp(s) < 0

t«T-1

while ¢t > 0 do
For all states s € S, Vi(s) = Y, m(a|s) Y. P(s',7 | 5,a) [r +vVit1(s)]
t+—t—1

return V;(s) forallse€ Sand t =0,...,T

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

PG
ety

3

7/13

lterative Policy Search

The policy evaluation algorithm immediately renders itself to a brute force algorithm
called policy search to find the optimal value function V* and an optimal policy 7*.
® The input is an infinite horizon MDP M = (S, A,P,R,y) with arbitrary initial

state distribution pg and a tolerance € for accuracy of policy evaluation,

Algorithm 3: Policy search

Input: M, e
IT + All stationary deterministic policies of M
7* <~ Randomly choose a policy 7 € II
V* + POLICY EVALUATION (M, 7%, €)
for m € II do
V7™ < POLICY EVALUATION (M, 7, €)
if V7(s) > V*(s) Vs€ S then
V*«VT
™ T
return V*(s), n*(s) for all s € S

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

8/13

lterative Policy Search

The policy evaluation algorithm immediately renders itself to a brute force algorithm

called policy search to find the optimal value function V* and an optimal policy 7*.

e The Algorithm terminates as it checks all || = |.A|lSl = m" deterministic
stationary policies (Recall that we are assuming that there exists an optimal policy

and in this case there is a deterministic stationary policy that is optimal).
* The run-time complexity of this algorithm is O(|.A4|1°]).
Lemma

Policy Search returns the optimal value function and an optimal policy when € = 0.
%) & %P XX ORI

&Y
c 54“,‘.,'_ The Chinese University of Hong Kong, Shenzhen

8/13

Recap: The Bellman Optimality Equation

The Bellman optimality equation, named after Richard E. Bellman, is a necessary

condition for a value function to be optimal:
V¥(st) = max Efre +yV*(st41) [ar = a].

The Bellman optimality equation # The Bellman equation.
® The Bellman equation describes an arbitrary policy’s value function
V(st) =E[re +yV(st+1)] (expected w.r.t. m(a¢|st)).
® The Bellman optimality equation takes the maximum overall actions (no policy in

the expectation).

lr{g‘g HHEF XKL CGEYD

_‘"_54‘-'_‘ The Chinese University of Hong Kong, Shenzhen

=

9/13

Recap: The Bellman Optimality Equation
Can we try iterative policy evaluation and improvement?
evaluation
VoVt
n Vv
T—>greedy(V)

improvement

¥ L K % (7 i)ll)
—.., * ‘é 4% X
TE ‘/ o

The Chinese University of Hong Kong, Shenzhen

9/13

Policy Iteration
The policy iteration algorithm applies the Bellman operator (Bellman optimality
equation and Bellman equation), which shows that given any stationary policy &, we

can find a deterministic stationary policy that is no worse than the existing policy.

Algorithm 4: Policy improvement Algorithm 5: Policy iteration

Input: V7 Input: M, e

#i(s) arge‘iax [R(s,0) + 7 XyesP(s' | 5,0)V7(s)] , Vs €S 7 <— Randomly choose a policy 7 € IT
return 7(s) for all s € § while true do

V7™ <= POLICY EVALUATION (M, 7€)
m* + POLICY IMPROVEMENT (M, V™)
if V™" =V~ then

The output of Algorithm 4 is at least as good | break
as the policy 7 corresponding to the input eise,rﬁ,r*

ViV

H V
value function V*, and represents a greedy return V*(s), 7*(s) for all s € §

attempt to improve the policy.

g, Shenzhen

10/13

Policy Iteration

Lemma
Consider an infinite horizon MDP with v < 1. The following statements hold.

1. When Algorithm 5 is run with € =0, it finds the optimal value function and an
optimal policy.

2. If the policy does not change during a policy improvement step, then the policy
cannot improve in future iterations.

3. The value functions corresponding to the policies in each iteration of the algorithm

form a non-decreasing sequence for every s € S.

o

#oF LK ERYD

e Chinese University of Hong Kong, Shenzhen

10/13

Policy lteration

Policy iteration in Grid World.

T . T

—

1

T

F & T XK F CRID
The Chinese University of Hong Kong, Shenzhen
o =

10/13

https://gibberblot.github.io/rl-notes/single-agent/policy-iteration.html

Recap: The Bellman Optimality Equation

The Bellman optimality equation, named after Richard E. Bellman, is a necessary

condition for a value function to be optimal:
V*(st) = max E[re+7yV*(st41) | ar = a].

Value Iteration (VI). If we replace V* by a not-necessarily optimal value function V/,

VI assigns RHS to V' and repeats the iteration:
V(st) <= max Efre +yV(st+1) | ar = 3.

This leads to improvements of the current value for each iteration and V' will converge
HEP K FEEID

The Chinese University of Hong Kong, Shenzhen

to the optimal value function under some conditions. b

EH
cIrren

3

11/13

Value lteration

Value lteration computes the optimal value function and an optimal policy given a
known MDP. For every element V € R" the Bellman optimality backup operator B* is

defined as:

(B*V)(s) = max R(s,a) —i—yz P(s'|s,a)V(s')|, VseS. (1)

ac
s'esS

EH
cIrren

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

3

12/13

Value lteration

Theorem

For an MDP with y < 1, let the fixed point of the Bellman optimality backup operator
B* be denoted by V* € R". Then the policy given by

m*(s) = argmax sa—l—}/ZP |s,a)V*(s')| ,VseS (1)

acA s'eS

will be a stationary deterministic policy. The value function of this policy V* satisfies

the identity V*® = V*, and V* is also the fixed point of the operator B* .
B #2vx k%09

cHrt The Chinese University of Hong Kong, Shenzhen

3

12/13

Value lteration

The above theorem suggests a straightforward way to calculate the optimal value
function V* and an optimal policy 7*. The idea is to run fixed point iterations to find
the fixed point of B*. Once we have V*, an optimal policy * can be extracted using

the arg max operator in the Bellman optimality equation.

Algorithm 6: Value iteration

Input: €
For all states s € S, V'(s) - 0, V(s) < oo
while [[V — V']l > ¢ do
Vv
\\ For all states s € S, V'(s) = max [R(s,0) + 7Y yesP(s' | 5,0)V (s)]

V*«<Viorallse S
™ argma.x [R(s,a) + 7Y gesP(s' | s,a)V*(s)] ,VseS
€A

return V (s), m(s) for all s € S

FEF XK FEEID

et The Chinese University of Hong Kong, Shenzhen

12/13

Value lteration in Grid World.

Policy after 100 iterations
- - -
T . T

Value lteration

Value function after 100 iterations
+0.64 +0.74 +0.85
o . o
+0.49

+0.43 +0.48 +0.28

AT XK F (HRI)D

The Chinese University of Hong Kong, Shenzhen

https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html

Question and Answering (Q&A)

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

13/13

