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DDA 4230 Resources

Check our course page. Please post your question on the discussion

board in the BlackBoard (BB) system.

• Step 1: Search for existing questions.

• Step 2: Create a thread.

• Step 3: Post your question.

Course Page Link (all the course relevant materials will be posted here):

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html
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Bandit lower bounds
The regret lower bound: given any fixed bandit algorithm, what is the regret that this

algorithm will suffer on some bandit instance?

Select two bandit problem instances under the following conditions:

1. Competition: An action, or, more generally, a sequence of actions that is good for

one bandit is not good for the other.

2. Similarity: The instances are ‘close’ enough that the policy interacting with either

of the two instances cannot statistically identify the true bandit with reasonable

statistical accuracy.

It seems these two requirements are clearly conflicting.

Can they happen simultaneously?
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Analysis

Preliminary 1: When a probability measure P is absolutely continuous with respect to a

probability measure P′ and λ is a common dominating σ -finite measure for P and P′

(their distributions supported on the same space), denote

dKL(P∥P′) =

∫
P log

P
P′ dλ

as the KL-divergence, which is also known as the relative entropy. For example, the

KL-divergence between N (0,σ) and N (c ,σ) is c2

2σ2 .
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Analysis

Preliminary 2: The discrepancy between probabilities of the same event can be bounded

by the discrepancy between the measures, among which we utilize the

Bretagnolle-Huber inequality.

Lemma (The Bretagnolle-Huber inequality)

Let P,P′ be probability measures defined on the same measurable space, then for an

arbitrary event A,

P(A)+P′(¬A)≥ 1
2
exp(−dKL(P∥P′)) .
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Analysis

This lemma can be moderately improved by La Cam’s inequality. The lemma also

trades off with Pinsker’s inequality, which bounds the total variation distance

P(A)−P′(A)≤
√

1
2
dKL(P∥P′) .

For small dKL(P∥P′) Pinsker’s inequality is tighter, but for a large KL divergence the

Bretagnolle-Huber inequality is more accurate.
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Analysis

Lemma (Divergence decomposition)

Consider two bandit instances with reward distribution P1, . . . ,Pm and P′
1, . . . ,P′

m.

Given a fixed policy π, denote the distribution of the trajectories on these two instances

as P and P′. Then,

dKL(P∥P′) =
∑
i∈[m]

EPπ
[Ni ,T ]dKL(Pi∥P′

i ) .
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Analysis

Armed with the lemmas, we show that the regret of a bandit algorithm is at least

O(
√
mT ). This bound matches with the instance-independent regret upper bounds

achieved by several algorithms that we have discussed.

Theorem
Let T ≥m−1 ≥ 1. Then for any policy π, there exist µ1, . . . ,µm, such that with

stochastic rewards N (µi ,1) for arm i , the regret of π on this bandit instance is at least

RT ≥ 1
16
√
e

√
(m−1)T .
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Analysis
Proof: Let π be a fixed algorithm and write Pπ as the probability measure of over the

trajectories under executing π on unit-variance Gaussian arms with mean µ . Let

∆=
√

m−1
4T . Consider two bandit instances µ = (µ1, . . . ,µm) and µ ′ = (µ ′

1, . . . ,µ
′
m)

where

µi =

∆, for i = 1 ,

0 otherwise ,

and

µ
′
i =


∆, for i = 1 ,

2∆, for i = argminj ̸=1EPπ

[
Nj ,T

]
,

0 otherwise ,

where argmin breaks ties arbitrarily. 4 / 6



Analysis
By the Bretagnolle-Huber inequality, for A= {N1,T ≤ T

2 },

Pµ(A)+Pµ ′(¬A)≥ 1
2
exp(−dKL(Pµ∥Pµ ′)) .

By the divergence decomposition,

dKL(Pµ∥Pµ ′) =
∑
i∈[m]

EPπ
[Ni ,T ]dKL(Pi ,µ∥Pi ,µ ′)

=
∑
i∈[m]

1{i = argminEPπ
[Ni ,T ]}EPπ

[Ni ,T ]dKL(Pi ,µ∥Pi ,µ ′)

= minEPπ
[Ni ,T ]dKL(N (0,1)∥N (2∆,1))

≤ T

m−1
·2∆2 .
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Analysis
Then, the regret RT and R

′
T of π on µ and µ ′ satisfy

RT +R
′
T ≥ Pµ(N1,T ≤ T

2
)
T

2
∆+Pµ ′(N1,T >

T

2
)
T

2
∆

=
T∆

2
(Pµ(A)+Pµ ′(¬A))

≥ T∆

2
1
2
exp(−2T∆2

m−1
)

=
1

8
√
e

√
(m−1)T .

This indicates that the arbitrary bandit algorithm π obtains a combined regret of at

least 1
8
√
e

√
(m−1)T in bandit instances µ and µ ′.

It shows that the regret is at least 1
16

√
e

√
(m−1)T on at least one of the instances.
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Analysis
An antagonist who picks µ ′ to produce a large regret.
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Instance-dependent lower bounds

For fixed ∆i , i ∈ [m], the regret lower bound is O(logT ), which matches the

instance-dependent regret bound of several algorithms that we have discussed.

Theorem
For Gaussian bandit arms with unit variance, the regret of a bandit algorithm is at least

RT ≥
∑
i∈[m]

2
∆i

logT +o(logT ) .
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Question and Answering (Q&A)
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