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DDA 4230 Resources

Check our course page. Please post your question on the discussion

board in the BlackBoard (BB) system.

• Step 1: Search for existing questions.

• Step 2: Create a thread.

• Step 3: Post your question.

Course Page Link (all the course relevant materials will be posted here):

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html
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Recap: Bayesian statistics and Bernoulli-Beta conjugate

Recall that the reward r(i) of arm i follows some distribution. Assume that the reward

distributions of arms belong to the same family with respective parameters, which writes

r(i)∼ p(x | θi ) .

Recall that when estimating θ , the posterior is

p(θ | x) = p(x | θ)p(θ)∫
θ ′ p(x | θ ′)p(θ ′)dθ ′ .

Conjugate distributions: The posterior distributions p(θ | x) are in the same probability

distribution family as the prior probability distribution p(θ).
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Recap: Bayesian statistics and Bernoulli-Beta conjugate

The Bernoulli-Beta is important for Thompson sampling for Bernoulli bandits. Recall

that the Beta distribution Beta(α,β ) with parameter θ = {α,β} follows the probability

density function of

p(x) =
Γ(α +β )

Γ(α)Γ(β )
xα−1(1−x)β−1 ,

where Γ(z) =
∫

∞

0 xz−1 exp(−x)dx , z ∈ C is the Gamma function.
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Recap: Bayesian statistics and Bernoulli-Beta conjugate
In Bayesian inference, the beta distribution is the conjugate prior probability distribution

for the Bernoulli distribution.
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Recap: Bayesian statistics and Bernoulli-Beta conjugate
When p(θ)∼ Beta(α0,β0) and we observe x1, . . . ,xα ′+β ′ ∼ x i.i.d. with α ′ ones and β ′

zeros (observe a new data x ∼ Ber(θ)), then the posterior should follow:

p(θ | x1, . . . ,xα ′+β ′) =
p(x1, . . . ,xα ′+β ′ | θ)p(θ)∫

θ ′ p(x1, . . . ,xα ′+β ′ | θ ′)p(θ ′)dθ ′

=

(
α ′+β ′

α ′

)
θ α ′

(1−θ)β ′ Γ(α+β)
Γ(α)Γ(β)θ α0−1(1−θ)β0−1∫

θ ′ p(x1, . . . ,xα ′+β ′ | θ ′)p(θ ′)dθ ′

=

(
α ′+β ′

α ′

) Γ(α+β)
Γ(α)Γ(β)∫

θ ′ p(x1, . . . ,xα ′+β ′ | θ ′)p(θ ′)dθ ′ θ
α0+α ′−1(1−θ)β0+α ′−1

∼ Beta(α0+α
′,β0+β

′) .
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Thompson sampling algorithms
• Before the game starts, the learner sets a prior over possible bandit environments.
• In each round, the learner samples an environment from the posterior and acts

according to the optimal action in that environment.
• The exploration in Thompson sampling comes from the randomization, i.e.,

whether the posterior concentrates or not.
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Thompson sampling algorithms
When the family of the underlying reward distribution is unknown, a Gaussian-Gaussian

conjugate (the non-informative prior) can be useful.
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The Regret of Thompson sampling Algorithms

Theorem
Assume the rewards of arms are µi -Bernoulli. The regret under TS (Bernoulli bandits)

is at most:

RT ≤
∑

i :∆i>0

µ1−µi

dKL(µ1∥µi )
logT +o(logT ) ,

where the Kullback-Leibler divergence:

dKL(µ1∥µi ) = µ1 log(
µ1

µi
)+(1−µ1) log(

1−µ1

1−µi
) .
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Question and Answering (Q&A)
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