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Recap: REINFORCE Algorithm

To compute the gradient VoJ(0) algorithmically, we can sample N trajectories

following the policy @ and use the empirical mean to estimate the gradient

VoJ(0) =E,[Q"(s,a)Vglogmg(a] s)].

® For Q"(s,a), we can use return Gy = >_7'r; to estimate.
® For Vyglogmg(a|s), it depends on the form of the policy.
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Recap: REINFORCE Algorithm

Algorithm 1: REINFORCE (Monte-Carlo method)

Initialize the policy parameter 6
for each episode do

Sample one trajectory on policy mg: Sg, ag, 7o, S1, @1, - - -

for eacht =0,1,...,T do

Gt + Eg:zt 'ty
0 < 0 + ay'G;Vglogmg(ay | s¢)
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Actor Critic methods

Motivation of Actor-critic.
® Most of the variance is from the Monte-Carlo estimation G; of Q(s¢,a;).

® We can estimate parametrized Q(s,a) and bootstrap the estimation into the policy
gradient. This results in a biased estimator but with a much lower variance.
® One way to estimate the value function is the temporal-difference method, With

this bootstrap, the method is called actor-critic.
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Actor Critic methods

An illustrative example of the idea of actor-critic.
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Actor Critic methods

Actor-critic methods consist of two models.
® The critic updates the value function parameters w.
® The actor updates the policy parameters @ in the direction suggested by the critic.

Note that although the REINFORCE with baseline method learns both a policy and a
state value function, we do not consider it to be an actor-critic method because its

state value function is used only as a baseline instead of a critic.
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Actor Critic methods

One-step actor-critic methods 1) replace the full return of REINFORCE with the

one-step return and 2) use a learned state value function as the baseline, as

A

0t+1 = et + (Xg(Gt — \/(St7 W))Vlog ﬂe(at ‘ St)
=0¢+ag(re+ y\A/(stH, w)— \7(st, w))Viogmg(a; | st).

This algorithm then takes two inputs: a differentiable policy parametrized by mg(a | s)

and a differentiable state value function parametrized by V(s,w).
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Actor Critic methods

Algorithm 3: One-step actor—critic (episodic)

Initialize the policy parameter @ and w at random. for each episode do
Initialize sy, the first state of each episode

for eacht=0,1,...,T —1do
sample a ~ 7(a | s¢,8)
take action a and observe s, r
§ e r+AV(s,w) - V(s,w)
W — W+ Apd VeV (s, w)
0+ 0+ agdVglogm(al|s,@)
s s
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Actor Critic methods

Some advancement on the AC algorithm.
e Advantages Actor Critic (A2C) replace r; +yV/(sy11,w) with Q(s,a,w’), so that
A(s,a) = Q(s,a,w’) —V(s¢,w).
¢ Asynchronous Advantages Actor Critic (A3C) asynchronously executes multiple

agents in parallel, thereby de-correlating the agents's data and stabilizing training.
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Actor Critic methods
The structure of Asynchronous Advantages Actor-Critic (A3C)

Global Network
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Soft Actor-Critic

Motivation. The combination of off-policy learning and high-dimensional, nonlinear
function approximation with neural networks presents a major challenge for stability and

convergence.
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Soft Actor-Critic

Soft Actor-Critic is an off-policy maximum entropy actor-critic algorithm.

e This algorithm extends readily to very complex, high-dimensional tasks, where

off-policy methods typically struggle to obtain good results.

® SAC also avoids the complexity and potential instability associated with

approximate inference in prior off-policy maximum entropy algorithms.
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Soft Policy lteration

Soft Policy Iteration considers a maximum entropy objective based on Standard RL,
which favors stochastic policies by augmenting the maximizing the expected sum of

rewards objective with the expected entropy of the policy over pz(s:), as

-
Z]Est at>0[r(se,ar) + aH(7(- | st))]- (1)
t=0

The temperature parameter o determines the relative importance of the entropy term

against the reward, and thus controls the stochasticity of the optimal policy (encourage
exploration). !
P ) B #2vx k%09
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Soft Policy lteration

We will begin by deriving soft policy iteration based on our objective. For a fixed policy,
the soft Q-value can be computed iteratively, starting from any function @ : S x A — R
and repeatedly applying a modified Bellman backup operator B” given by

B"Q(st,ar) = r(st,ar) + Vs, ~p[V(Se41)], (1)
V(st) = Eann[Q(st, ar) — log m(a; | st)] (2)

is the soft state value function. We can obtain the soft value function for any policy 7

by repeatedly applying B* as formalized below.
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Soft Policy lteration

Lemma (Soft policy evaluation)
Consider the soft Bellman backup operator B® and a mapping Q°: S x A — R with
|A| < oo, and define @“** = B*Q. Then the sequence Q¥ will converge to the soft

Q-value of T as k — oo,

Proof.
Define the entropy augmented reward as ry(s¢, ar) = r(st,at) +E,  ~p [H (7(- | P))]
and rewrite the update rule as:Q(st,at) < ra(se,ar) + YEs, 1 ~Pars1~n[Q(St4+1,at41)]
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Soft Policy lteration

In the policy improvement step, the policy update results in an improved policy in terms
of its soft value. For each state, we update the policy according to

eXp(Q”nld(st, ))

oo = argminda (- 59 ST L) W

el

The partition function Z™4(s;) normalizes the distribution.

Lemma (Soft policy improvement)

Let moq € N and let Ty be the optimum of the minimization problem defined . Then,
Qv (sp,ar) > Q™M(s¢,a¢) for all (s¢,a:) € S x A when |A] < 0.
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Soft Policy lteration

The full soft policy iteration algorithm alternates between the soft policy evaluation and
the soft policy improvement steps, and it will provably converge to the optimal

maximum entropy policy among the policies in 1, as shown in the below lemma.

Lemma (Soft policy iteration)

Repeated application of soft policy evaluation and soft policy improvement from any
m € 1 converges to a policy n* such that Q™ (s;,a:) > Q*(st,a:) for all # € N and
(st,a:) € S x A, assuming that |A| < oo.
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Soft Policy lteration

Although this algorithm will provably find the optimal solution, we can perform it in its
exact form only in the tabular case. Therefore, we will next approximate the algorithm
for continuous domains, where we need to rely on a function approximator to represent
the Q-values, and running the two steps until convergence would be computationally

too expensive.
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SAC Algorithm for Deep RL

We will consider a parameterized state value function Vi, (s;), soft Q-function
Qo(st,ar), and a tractable policy my(a; | st).

Update V/(s). The soft value function is trained to minimize the squared residual error
1 2
W (W) =Esup | 5 (Viy(st) = Earory [Qo (st a:) — log Ty (ar [ 51)])” | (1)
where D is a replay buffer. The gradient can be estimated with an unbiased estimator

ﬁwJV(‘I/) = Vy Vy(st) (Vw(st) — Qo(st,at) +log my (a: | St)) ) (2)

where the actions are sampled according to the current policy instead of the replay
HEP K FEEID
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SAC Algorithm for Deep RL

Update Qy(s,a). The soft Q-function parameters can be trained to minimize:

1 A

n 2
JQ(Q) = E(st,at)~D {2 (Qe(sta at) - Q(Shat)) } 7Q(5t7at) = f(St, at) +YEst+1~[P’[Vl_p(5t+1)]v

which again can be optimized with stochastic gradients

%GJQ(Q) = Vo Qo(ar,st) (Q9(5t7at) —r(se,ar) — ?’Vv‘/(stﬂ)) .

The update makes use of a target value network Vi, where ¥ can be 1) an
exponentially moving average of the value network weights or 2) updated to match the

current value function weights periodically.
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SAC Algorithm for Deep RL

Update 7s(a|s). Finally, the policy parameters can be learned by directly minimizing

the expected KL-divergence:

exp (Qo(st; "))
Ze(st)

J2(¢) = Esiop | dii (7 (- | st)l )

for minimizing Ji, we reparameterize the policy using a neural network transformation

atr = f¢(8t;5t)7

where €; is an input noise vector, sampled from some fixed distribution, such as a
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SAC Algorithm for Deep RL

We can now rewrite the objective as

J2(9) = Esnp e [|0g7f¢(f¢(8t;5t) | st) — Qo(st, f¢(8t?5t))] )

where 74 is defined implicitly in terms of f;. We can approximate the gradient with

—

VoJu(9) =Vylogmy(ar | st) + (Va logmg(as | st) — Va, Q(st,a:)) Vo fo(€rist),

where a; is evaluated at fy(&;;s;:). This unbiased gradient estimator extends the DDPG

style policy gradients to any tractable stochastic policy. %
<&
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SAC Algorithm for Deep RL

Algorithm 4: Soft actor-critic (SAC)

Initialize parameter vectors v, ¥, 01, 62, ¢
for each iteration do

for each environment step do

ar ~ mg(at | st)

st+1 ~ P(st41 | st,a)

L D+ DU {(St, ag, T(St, at), 8t+1)}
for each gradient step do

Y < — AvVydy(¢)

0; < 0; — )\QﬁgiJQ(oi) for i € {1,2}
¢i — ¢ - /\7rv¢J1r(¢_5)

LYyt +(1-1)
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SAC Algorithm for Deep RL
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SAC Algorithm for Deep RL
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SAC Algorithm for Deep RL
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Question and Answering (Q&A)
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