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Policy Gradient in Episodic MDP

Policy Gradient Methods: Taking gradient (denoted as g) with respect to 6 gives us

g=E

T
r(t)Vglog (Z P (st+1 | st,at) - mo (a¢ | 5t)>

t=0

T
=K !Z r:Velog mg (at | St)] .

t=0

This gradient is unbiased and we do not need access to the dynamic model to compute

this.
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Policy Gradient in Stationary MDP

There are several different related expressions for the policy gradient, which have the
form

g=E|) y'V,Vglogm(a|st)]
t=0
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Policy Gradient in Stationary MDP

> i oV could be the following:

—_

- Yo Y re : the total reward of the trajectory Monta-Carlo;
. Q™ (st,a¢) : the action value function Temporal Difference;
. Y u_¢Vry o the reward following action a; Monta-Carlo;

Y vV [re — b(st)] : the reward following action a; with a baseline Monta-Carlo;

(€2 I N CS B \S]

. >yt A% (st,a¢) : the advantage function Temporal Difference;
6. > p_ire+YVT(se41) — V*(s¢) : the TD residual Temporal Difference.
The latter formulas use the definitions A" (s¢,a:) := Q" (s¢,ar) — V™ (s¢), which is the
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Trust Region Policy Optimization (TRPO)

Motivation: The challenge of step size.

® |n the classic supervised learning setting or in the optimization literature, having a
bad step size may not be terrible. This is because the next update can partially

correct the error in the previous steps.

® |n policy optimization, when the step size is too far, we obtain a terrible policy.
This indicates that the next batch of data will be collected under this terrible
policy. Exploration could be exploratory, but updates should be more conservative.

® |t becomes not clear how to recover short of going back and shrinking the step size.
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Trust Region Policy Optimization (TRPO)

One method of choosing the step size is by line search. The procedure is:

1. Calculate the initial loss (e.g., with Monte-Carlo estimation) and initialize the step

size to be a large value;

2. Update the parameter with the gradients under the current step size can calculate

the new loss;

3. Decrease the value of step size until we have found a new loss that is less than the

initial loss.

However, 1) it may be expensive to compute so many gradients, 2) this method ignores
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Trust Region Policy Optimization (TRPO)

An alternative method is the trust region method.
Let us first denotes P(7 | 0) = P(so) M P(st11 | st,at)Te(ac | 5t). Then the trust

region method finds us the next parameter 6 + 86 by solving the following problem.

-
max 60
66 £

subject to dki (P(7]0)||P(7|6+66)) <e,

where dk denotes the KL divergence, g is our gradient estimate, and € is a parameter

we can set. Here, the change in the objective function is estimated by assuming that
B #2vx k%09
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Trust Region Policy Optimization (TRPO)

RPN

_ Line search Trust region
(like gradient ascent)
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Trust Region Policy Optimization (TRPO)

Function Value
A

(0014, (B014))

L(610014)
B, ~ Variable
o
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Trust Region Policy Optimization (TRPO)

Function Value
A

S g Variable

Trust Region
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Trust Region Policy Optimization (TRPO)

Function Value
A

" Variable

Bnew
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Function Value
A

Trust Region Policy Optimization (TRPO)

Source.!
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Trust Region Policy Optimization (TRPO)

Using the expression of the KL divergence, we have

P(7;0)
dkL (P(7;0)||P(1;:0+60))= > P(7;0)log —————
P (s0) [T/ 7o (at | 5t) P(st1 | 5t,a)
(s0) HtT;ol To150 (ar | 5t) P(st+1 | st,at)
[1¢o 7 (at | st)

— )
Ht:ol To150 (ar | st)

= ZT: P(7;0)log 5

= ZP(T;O)Iog
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Trust Region Policy Optimization (TRPO)

With M samples, this term can be approximated by the sample average and we may

rewrite the maximization problem to be

max g &6
66 £
m(als
subject to — E log o |) <e.

To1s0(als)

This maximization problem with the constraint can be hard to enforce given

complicated policies like neural networks.
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Trust Region Policy Optimization (TRPO)

We would need to approximate the KL divergence further for a feasible objective. This

is done through second-order approximation with fisher matrix Fy.

de (mg(a] s)||messe(als))~ 86" Z Vglogmg(a|s)Velogme(als)' | 56
(s,a)~6

=386 Fy50.
Our problem is simplified to linear objective quadratic constrained optimization:

max g'd86
56

subject to 50T Fyd0 <e,
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Trust Region Policy Optimization (TRPO)

The above linear objective quadratic constrained optimization problem could be solved
analytically using the Karush-Kuhn-Tucker (KKT) conditions. Thus the final TRPO

objective is given as

n(als)
ﬂold(a ’ S)

Constraint: Eg, [dkL (7||7o1a)] < €,

Surrogate loss :maxL(7) =E, Al (s 3)
T

where A denotes the advantage function. This corresponds to a general policy gradient

form we have mentioned earlier.
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Proximal Policy Optimization

The PPO method enforces a “soft” constraint by adding a proximal value to the

objective function. The objective is the following

Tlg (at ’ St)

Lir)=FE _
( ) Told LR (at ‘ St)

AN (s, a) — BdkL (Tayy > )

The B can be fixed or adaptively chosen (or simply set to 0).
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Proximal Policy Optimization

The PPO method enforces a “soft” constraint by adding a proximal value to the

objective function. The objective is the following

o (at | st) ,x
L(m :Eo —————A™M(s,3) — BdkL o4 > o
(0) = B | P A5, 3) — Bk (7o)
The B can be fixed or adaptively chosen (or simply set to 0). One reason why one may
wish to adaptively choose B8 is because it can be hard to find one B that performs well

across different problems.
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Proximal Policy Optimization

The policy's performance can fluctuate greatly when p:(0) = % changes too
old

quickly. Thus PPO limits p to a range of [1 —€,1+ €] such that no abrupt updates to

the policy will be made. The surrogate objective is then written as
LLP (1) = E[min{p:(8)A(s, a),clip(p:(0),1 —&,1+€)A(s,a)}] .

We take the minimum of the constrained and unconstrained objectives such that our
final objective is a lower bound of the unclipped objective. With this scheme, we only
ignore the change in probability ratio when it would make the objective improve, and we

include it when it makes the objective worse. l:E;g

EH
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Proximal Policy Optimization

In the following plots, r denotes the rate s.t. r = p:(0)

LCLIP A>0

— Tl (at|st)
Togyg (3t[st)

A<O

1

0 1

LCLIP

21D
g Kong, Shenzhen

5/7



Proximal Policy Optimization

In the following algorithm, g denotes the clipping function.

Algorithm 1 PPO-Clip
1: Input: initial policy parameters @y, initial value function parameters gy
2 for k=0,1,2, ... do
3 Collect set of trajectories DL = {n:} by running policy m = () in the environment.
4 Compute rewards-to-go R,.
5. Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function V.
6: Update the policy by maximizing the PPO-Clip objective:

sy = argmax |D T Z me ( o(ae|s:) _1“»;.{.-;*_ ay). gle, A% (s, r{l}]) .

o L8
TeDy =l 7o, il se

typically via stochastic gradient ascent with Adam,
7. Fit value function by regression on mean-squared error:

2
Dyl = argugn Z Z (1 st) ,.)
1eDA t=0 N
HEP K FEEID
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Proximal Policy Optimization

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com
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Proximal Policy Optimization

algorithm avg. normalized score
No clipping or penalty -0.39
Clipping, € = 0.1 0.76
Clipping, ¢ = 0.2 0.82
Clipping, € = 0.3 0.70
Adaptive KL dtarg = 0.003 0.68
Adaptive KL diarg = 0.01 0.74
Adaptive KL diarg = 0.03 0.71
Fixed KL, 6 =0.3 0.62
Fixed KL, g = 1. 0.71
Fixed KL, 8 = 3. 0.72
Fixed KL, 8 = 10. 0.69

Table 1: Results from continuous control benchmark. Average normalized scores (over 21 runs of the
algorithm, on 7 environments) for each algorithm / hyperparameter setting . 8 was initialized at 1.
Gy, LNe LIUNEse UIIVesity Of 10ng nong, Shenzhen
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Proximal Policy Optimization

Results of robot control tasks in the MuJoCo environments (click me).
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Step1

Proximal Policy Optimization

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-35
with supervised
learning.

”~
~d

Explain reinforcement

learning toa year old.

}

@

4

We give treats and

punishments to teach...

Step2

Collect comparison data and
train a reward model.

A promptand r }

=~
several model Explain reinforcement
outputs are leaming to a 6 year old.
sampled.

R ——

Alabeler ranks the
outputs from best
toworst.

This data is used
to train our
reward model.

Step3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

Anew prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

e

Write astory
about otters.

Onee uponatime...
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Group Relative Policy Optimization (GRPO)

GRPO is an improvement over PPQ, particularly in large-scale or structured sampling

setups such as those used in LLM alignment training.

Aspect PPO GRPO
Reward Type Absolute scalar reward Relative (group or rank-based) reward
Advantage Source Individual trajectory Within-group comparison

Update Mechanism  Clipped policy ratio Clipped group-relative policy ratio

Primary Use Case General RL tasks Preference-based LLM alignment
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Group Relative Policy Optimization (GRPO)

GRPO does not rely on the computation of Vthe alue function.

Reference
Model

Trained
Models
Frozen
Models
Reward
Model

i)

g Kong, Shenzhen

Figure 4 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead

estimating the baseline from group scores, significantly reducing training resources. y
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Group Relative Policy Optimization (GRPO)

LGRPO(Q) Egg Zmln(r,(G)A(g cllp(r,(G), 1—¢, 1_|_£) AEE))

icg

exp(BR,-) _ i
2icgP(BR) gl

Here, each sample i in group g has a raw score R;, which is transformed via a softmax

~

A8 = £ (R, {Ri}jeg) =

function to obtain a normalized relative probability within the group. The temperature
parameter B controls the sharpness of this weighting; higher values emphasize the

FEF XK FEEID
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Group Relative Policy Optimization (GRPO)

Algorithm 1 Iterative Group Relative Policy Optimization
Input initial policy model 74, ; reward models r,; task prompts D; hyperparameters ¢, 8, 1

1: policy model my « mg,,
2: foriteration=1,...,1do

3: reference model 7,.f < g

4 forstep=1,...,Mdo

5: Sample a batch D, from D

6: Update the old policy model 7g , < mg

7: Sample G outputs {oi}?=1 ~ g, (- | q) for each question q € Dy

8 Compute rewards {r;}¢ for each sampled output o; by running r,,

9: Compute A;, for the t-th token of o; through group relative advantage estimation.
10: for GRPO iteration=1, ..., p do
11: Update the policy model 74 by maximizing the GRPO objective (Equation 21)
12: Update r,, through continuous training using a replay mechanism.
Output 79
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Question and Answering (Q&A)
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