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Policy-based and value-based algorithms

Value-based algorithms include Q-learning, temporal-difference learning, and policy

and value iteration

® These algorithms learn the values of actions V/(s) or Q(s,a) and then selected

action a based on the action values 7(s) = argmax,c 4 Q(s, a);

® The policy does not exist without the action value estimates Q(s).
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Policy-based and value-based algorithms

Concerns about value-based methods.

® The vanilla approaches can only address discrete action spaces due to the

argmax,c 4 operation. However, in practice, the action space is usually continuous.

e Computing the action value functions Q(s, a) for all state-action pair is costly

when the action and state spaces are large or continuous.
® The policy of Q-Learning is deterministic and e-greedy explore can be inefficient.

e |t implicitly and indirectly improves the policy by improving the estimates of the

values functions. However, we would think intuitively that improving the policy
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Policy-based and value-based algorithms

Policy gradient is the canonical approach for policy-based learning.

® Policy-based method directly parameterizes the policy function my(s) without

calculating the value functions.

® We use the notation 8 € R? for the policy’s parameter vector. We then write
n(a|s,0) =P(ar = a| st =s,0) as the probability that action a is taken given that
the environment is in state s with parameter 6.

e A value function may still be used to learn the policy parameter, but is not

required for action selection (will talk about it later in the actor-critic algorithm).
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Policy approximation with parametrization

Discrete Action Space. then a natural way to parameterize a policy is to form
parameterized state-action preferences h(s,a,@) for each (s,a) pair and use a softmax

distribution

exp(h(a,s,0))

n(als,0)= S exp(h(@,s,0))

(softmax in action preferences)

® The state-action preference measures how the policy mg prefer action a given state
s. The actions with the highest preferences in each state are given the highest

probabilities of being selected. FE;;?
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Policy approximation with parametrization

Discrete Action Space. then a natural way to parameterize a policy is to form
parameterized state-action preferences h(s, a,0) for each (s,a) pair and use a softmax

distribution

exp(h(a,s,8))

n(als,0)= S exp(h(a,s,0))

(softmax in action preferences)
® The action preferences h(a,s,0) can be parameterized arbitrarily. For example, it
can simply be the linear combinations of features (as for the feature vectors x(a,s))

h(a,s,0)=0"x(a;s).
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Policy approximation with parametrization
Continuous Action Space. The policy can be defined as the normal probability
density over a real-valued scalar action, with mean and standard deviation given by

parametric function approximators

(a B ‘U(S, 9#))2 )
20(s,60,)%2 7

n(a|s,0)= exp(—

1
0(s,0,)V2m
® We divide the policy’s parameter vector into two parts, 8 = [6,,,60.].

® One possible way to parametrize the mean and standard deviation is

u(s,0) = Glx”(s), 6(s,0) = exp(0] x5 (5)),
B #2vx k%09
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Policy approximation with parametrization

Advantages of using parametrization
® |t handles both discrete and continuous action spaces.

® |t could be deterministic or stochastic. If the optimal policy is deterministic, then

the preference values h(a,s,0) will be driven infinitely higher than all other actions.

® The choice of policy parametrization is sometimes a good way of injecting prior

knowledge about the desired form of the policy into the learning.

® Policy gradient has stronger convergence guarantees than value-based method

because of the smooth change in the probability.
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Policy Gradient Objective

Recall the gradient descent algorithm, 6;11 = 0 + Ocm) where J(0) is our objective
function and a is the learning rate.
For the episodic case, where the episode terminates at some terminal state set, we
define the objective function J(0) as

J(60) = V™(sp) Zp”" s|s0)r(s),

seS

where sp is the starting state, V™ (sp) is the value function for mg, and
r(s) =Eaz[R(s,a)] is the expected reward at s following 7. The occupancy measure
pT(s|s0) =+ ZtT:OIP’(st =s|sp,mg), where T is a random variable denoting the
A& T XK ZCRID
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P <N The Chinese University of Hong Kong, Shenzhen

4/8



Policy Gradient Objective

For the continuing case, where the process continues infinitely, we define the

objective function J(@) as the averaged reward over the time steps.
T
o1
J(0) = }ITMT;E[I} | 50,71'9]
= lim E[rt ’ 50,71'9]
t—ro0

= p™(s|s0)r(s)

s

=V (50) )

where the occupancy measure p™ (s | sp) = lim¢_,ee P(st = s | S, ) is the stationary
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Policy Gradient Objective

For the discounted case where y < 1, we define the objective function J(8) as the

expected discounted return

J(O)=V™(s0)=> p™(s]|
seS
where the occupancy measure p™ (s | sp) = (1 —7) > 1o V'P(st = s | s0,7g)-
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Policy Gradient Objective

The policy gradient theorem states that

VoJ(0) <> p™(s|s0)Y Q™ (s,a)Vems(as)

seS acA
= En[Qne (S,a)Ve |0g759(3 ’ 5)] .
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Proof of policy gradient theorem

Please refer to the proof of the episodic case in discrete state-action space in the

lecture notes.
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REINFORCE (episodic Monte-Carlo policy-gradient control)

To compute the gradient VoJ(0) algorithmically, we can sample N trajectories

following the policy @ and use the empirical mean to estimate the gradient

VoJ(0) =E,[Q"(s,a)Vglogmg(a] s)].

® For Q"(s,a), we can use return Gy = >_7'r; to estimate.

® For Vyglogmg(a|s), it depends on the form of the policy.
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REINFORCE (episodic Monte-Carlo policy-gradient control)

Algorithm 1: REINFORCE (Monte-Carlo method)
Initialize the policy parameter 6
for each episode do
Sample one trajectory on policy mg: Sg, ag, 79, S1,@1,---, ST
for eacht =0,1,...,T do
L Gt p?"
0 < 0 + ay'G;Vglogmg(ay | s¢)
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REINFORCE with baselines

One problem of policy gradient method is high variance. (why? Click to see a very

intuitive explanation.) A natural solution is to subtract a baseline b(s) from Q7, i.e.,

VoJ(8) D> p(s|s0)D (Q(s,a)~b(s))Ve(als).
seS acA
The baseline can be any function, even a random variable, as long as it does not

depend on the action a.

Zb )WVr(als,0)= VZ (a|s,0)=b(s)V1=0.
The expectation value does not change. The update rule that we end up with is a new

version of REINFORCE that includes a general baseline

o
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https://www.quora.com/Why-does-the-policy-gradient-method-have-a-high-variance
https://www.quora.com/Why-does-the-policy-gradient-method-have-a-high-variance

REINFORCE with baselines
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REINFORCE with baselines

One natural choice for the baseline is an estimate of the state value V(s,w), where
w € RY is a weight vector to be learned. We can use the same method as we adopted

in learning 0 to learn w. The complete process is as follows. We have two inputs:
¢ A differentiable policy parametrization mg(a | s);

e A differentiable state value function parametrization V/(s,w).
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REINFORCE with baselines

Algorithm 2: REINFORCE with baseline

Initialize the policy parameter 8 and w at random.
for each episode do
Sample one trajectory under policy mg: sg,ag, 7, $1,81,71--- ST
for eacht =1,2,...,T do
T _
Gt — Et’:t 'Yt t'rtl

d — Gt — ‘}(St,W)A
W W+ A0V V(st, w)

0 «— 0 + agy'dVglog mp(ay | s¢)
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Question and Answering (Q&A)
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