
Lecture 17 - Policy gradient

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

Policy-based and value-based algorithms

Value-based algorithms include Q-learning, temporal-difference learning, and policy

and value iteration

• These algorithms learn the values of actions V (s) or Q(s,a) and then selected

action a based on the action values π(s) = argmaxa∈AQ(s,a);

• The policy does not exist without the action value estimates Q(s).

2 / 8

Policy-based and value-based algorithms

Concerns about value-based methods.

• The vanilla approaches can only address discrete action spaces due to the

argmaxa∈A operation. However, in practice, the action space is usually continuous.

• Computing the action value functions Q(s,a) for all state-action pair is costly

when the action and state spaces are large or continuous.

• The policy of Q-Learning is deterministic and ε-greedy explore can be inefficient.

• It implicitly and indirectly improves the policy by improving the estimates of the

values functions. However, we would think intuitively that improving the policy

directly would be more efficient.

2 / 8

Policy-based and value-based algorithms

Policy gradient is the canonical approach for policy-based learning.

• Policy-based method directly parameterizes the policy function πθ (s) without

calculating the value functions.

• We use the notation θ ∈ Rd for the policy’s parameter vector. We then write

π(a | s,θ) = P(at = a | st = s,θ) as the probability that action a is taken given that

the environment is in state s with parameter θ .

• A value function may still be used to learn the policy parameter, but is not

required for action selection (will talk about it later in the actor-critic algorithm).

2 / 8

Policy approximation with parametrization

Discrete Action Space. then a natural way to parameterize a policy is to form

parameterized state-action preferences h(s,a,θ) for each (s,a) pair and use a softmax

distribution

π(a | s,θ) = exp(h(a,s,θ))∑
a′ exp(h(a

′,s,θ))
. (softmax in action preferences)

• The state-action preference measures how the policy πθ prefer action a given state

s. The actions with the highest preferences in each state are given the highest

probabilities of being selected.

3 / 8

Policy approximation with parametrization
Discrete Action Space. then a natural way to parameterize a policy is to form

parameterized state-action preferences h(s,a,θ) for each (s,a) pair and use a softmax

distribution

π(a | s,θ) = exp(h(a,s,θ))∑
a′ exp(h(a

′,s,θ))
. (softmax in action preferences)

• The action preferences h(a,s,θ) can be parameterized arbitrarily. For example, it

can simply be the linear combinations of features (as for the feature vectors x(a,s))

h(a,s,θ) = θT x(a,s) .

3 / 8

Policy approximation with parametrization
Continuous Action Space. The policy can be defined as the normal probability

density over a real-valued scalar action, with mean and standard deviation given by

parametric function approximators

π(a | s,θ) = 1
σ(s,θσ)

√
2π

exp(−(a−µ(s,θµ))
2

2σ(s,θσ)2
) .

• We divide the policy’s parameter vector into two parts, θ = [θµ,θσ].
• One possible way to parametrize the mean and standard deviation is

µ(s,θ) = θT
µ xµ(s) , σ(s,θ) = exp(θT

σ xσ(s)) ,

where xσ(s) and xµ(s) are feature vectors.
3 / 8

Policy approximation with parametrization

Advantages of using parametrization

• It handles both discrete and continuous action spaces.

• It could be deterministic or stochastic. If the optimal policy is deterministic, then

the preference values h(a,s,θ) will be driven infinitely higher than all other actions.

• The choice of policy parametrization is sometimes a good way of injecting prior

knowledge about the desired form of the policy into the learning.

• Policy gradient has stronger convergence guarantees than value-based method

because of the smooth change in the probability.

3 / 8

Policy Gradient Objective

Recall the gradient descent algorithm, θt+1 = θt + ̂α∇J(θ) where J(θ) is our objective

function and α is the learning rate.

For the episodic case, where the episode terminates at some terminal state set, we

define the objective function J(θ) as

J(θ)= V πθ (s0) =
∑
s∈S

ρ
πθ (s | s0)r(s) ,

where s0 is the starting state, V πθ (s0) is the value function for πθ , and

r(s) = Ea∼π [R(s,a)] is the expected reward at s following π. The occupancy measure

ρπθ (s | s0) = 1
T

∑T
t=0P(st = s | s0,πθ), where T is a random variable denoting the

index of the terminal step.

4 / 8

Policy Gradient Objective

For the continuing case, where the process continues infinitely, we define the

objective function J(θ) as the averaged reward over the time steps.

J(θ)= lim
T→∞

1
T

T∑
t=1

E[rt | s0,πθ]

= lim
t→∞

E[rt | s0,πθ]

=
∑
s

ρ
πθ (s | s0)r(s)

= V πθ (s0) ,

where the occupancy measure ρπθ (s | s0) = limt→∞P(st = s | s0,πθ) is the stationary

distribution of the Markov chain under policy πθ .

4 / 8

Policy Gradient Objective

For the discounted case where γ < 1, we define the objective function J(θ) as the

expected discounted return

J(θ)= V πθ (s0) =
∑
s∈S

ρ
πθ (s | s0)r(s) ,

where the occupancy measure ρπθ (s | s0) = (1− γ)
∑

∞

t=0 γtP(st = s | s0,πθ).

4 / 8

Policy Gradient Objective

The policy gradient theorem states that

∇θJ(θ) ∝

∑
s∈S

ρ
πθ (s | s0)

∑
a∈A

Qπθ (s,a)∇θ πθ (a | s)

= Eπ [Q
πθ (s,a)∇θ logπθ (a | s)] .

4 / 8

Proof of policy gradient theorem

Please refer to the proof of the episodic case in discrete state-action space in the

lecture notes.

5 / 8

REINFORCE (episodic Monte-Carlo policy-gradient control)

To compute the gradient ∇θJ(θ) algorithmically, we can sample N trajectories

following the policy π and use the empirical mean to estimate the gradient

∇θJ(θ) = Eπ [Q
π(s,a)∇θ logπθ (a | s)] .

• For Qπ(s,a), we can use return Gt =
∑

γtrt to estimate.

• For ∇θ logπθ (a | s), it depends on the form of the policy.

6 / 8

REINFORCE (episodic Monte-Carlo policy-gradient control)

6 / 8

REINFORCE with baselines
One problem of policy gradient method is high variance. (why? Click to see a very

intuitive explanation.) A natural solution is to subtract a baseline b(s) from Qπ , i.e.,

∇θJ(θ) ∝

∑
s∈S

ρ
π(s | s0)

∑
a∈A

(Qπ(s,a)−b(s))∇πθ (a | s) .

The baseline can be any function, even a random variable, as long as it does not

depend on the action a.∑
a

b(s)∇π(a | s,θ) = b(s)∇
∑
a

π(a | s,θ) = b(s)∇1 = 0 .

The expectation value does not change. The update rule that we end up with is a new

version of REINFORCE that includes a general baseline

θ ← θ +αγ
t(Gt −b(st))∇θ logπθ (at | st) .

7 / 8

https://www.quora.com/Why-does-the-policy-gradient-method-have-a-high-variance
https://www.quora.com/Why-does-the-policy-gradient-method-have-a-high-variance

REINFORCE with baselines

7 / 8

REINFORCE with baselines

One natural choice for the baseline is an estimate of the state value V̂ (s,w), where

w ∈ Rd is a weight vector to be learned. We can use the same method as we adopted

in learning θ to learn w . The complete process is as follows. We have two inputs:

• A differentiable policy parametrization πθ (a | s);

• A differentiable state value function parametrization V̂ (s,w).

7 / 8

REINFORCE with baselines

7 / 8

Question and Answering (Q&A)

8 / 8

