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Model-Free Control

In this lecture, we will discuss model-free control where we learn good policies with only
interactions, no knowledge of reward structure or transition probabilities). This

framework is important in two types of domains:
1. When the MDP model is unknown, but we can sample trajectories from the MDP;

2. When the MDP model is known but computing the value function via our
model-based control methods is infeasible due to the size of the domain, but we

can sample trajectories from the MDP.

In this lecture, we will still restrict ourselves to the setting of discrete RL.
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Model-Free Control

Generalized Policy Iteration (with a known model):

Algorithm 1: Policy iteration
Input: M,e
7 < Randomly choose a policy m € II
while true do
V™ + POLICY EVALUATION (M, 7,¢)
m*(s) + arg n:tax E[R(s,a)l + 7> yesP(s'|s,a)V™(s'), Vs € S
a€
if 7*(s) = m(s) then
L break

else
L 7méen*

Ve VT
return V*(s), 7%(s) for all s € S )
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Model-Free Control

Model-free Generalized Policy Iteration

Algorithm 2: Model-free generalized policy iteration
Input: €
7 + Randomly choose a policy 7 € 11
while true do
Q™ «— MODEL-FREE POLICY EVALUATION (, €)
7*(s) + argmax Q7(s,a), Vs € S
acA

if 7*(s) = 7(s) then
L break

else
L méean*

Q)k — Q‘.‘T
return Q*(s,a), n*(s) foralls € S,ac A
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Model-Free Control

There are a few caveats to this algorithm due to the substitution we made in line 5.

1. If policy 7 is deterministic or does not take every action a with some positive

probability, then we cannot actually compute the argmax in line 5.

2. The policy evaluation algorithm gives us an estimate of Q7, so it is not clear

whether line 5 will monotonically improve the policy like in the model-based case.

The policy m needs to explore actions, even if they might be suboptimal with respect to
our current Q-value estimates.
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Exploration

e g-greedy policies: Take a random action with a small probability and take the
greedy action the rest of the time. This type of exploration strategy is called an
e-greedy policy. Mathematically, an &-greedy policy with respect to the

state-action value Q" (s, a) takes the form

Uniform(.A) with probability €
m(als) =
argmax, Q"(s,a)  with probability 1 —¢€.
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Exploration

® Monotonic e-greedy policy improvement: the policy improvement for the e-greedy
policy can be shown as:
Lemma (Monotonic e-greedy policy improvement)

Let m; be an e-greedy policy. Then, the e-greedy policy with respect to Q™ , denoted

Ti+1, Is @ monotonic improvement on policy . In other words, Vi1 > V7%,
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Exploration

® Greedy in the limit of exploration: balance the exploration of new actions with the
exploitation of current knowledge by introducing a new class of exploration

strategies that allows convergence guarantees of our algorithms.
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Exploration

Definition (Greedy in the limit of infinite exploration)

A policy 7 is greedy in the limit of infinite exploration if it satisfies the following:

® 1. All state-action pairs are visited for infinitely many times, i.e., for all s€ S,a€ A,

klim Ni(s,a) — o with probability 1,
—o0

where N (s, a) is the number of times action a is taken at state s up to episode k.
2. The behavior policy converges to the policy that is greedy with respect to the learned
Q-function, i.e., forall s€ S,ac A,

lim mx(a|s) =argmaxQ(s,a) with probability 1.
k—ro0 a 187 5
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Exploration

® Example of a GLIE strategy:
An e-greedy policy where € is decayed to zero with & = O(1/k), where k is the
episode number. We can see that since Zszl &k = O(log K), we will explore each
action for infinitely many times, hence satisfying the first GLIE condition (we leave
the rigorous proof to the reader). Since & — 0 as k — oo, we also have that the

policy is greedy in the limit, hence satisfying the second GLIE condition.
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Monte-Carlo Control

Online Monte-Carlo Control:

Algorithm 3: Online Monte-Carlo control

Initialize Q(s,a) =0, Returns(s,a) =0forall s € S;a € A
Set k+ 1
while {rue do
Sample k-th episode {8, sk, Ttk }ec(m) under policy m
fort=1,...,H do
if First visit to (s,a) in episode k then
Append SF_, re k to Returns(s,a;)
Q(st,a1) + average(Returns(sg, ar))

ke—k+1le= é
| 7k = e-greedy with respect to @
Return Q, 7y
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Monte-Carlo Control

GLIE strategies can help us arrive at convergence guarantees for our model-free control

methods. In particular, we have the following statement.

Lemma

GLIE Monte-Carlo control converges to the optimal state-action value function. That is

Q(s,a) = Q*(s,a).
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Temporal-Difference (TD) Methods for Control

Online Temporal-difference Methods for Control:

Algorithm 4: SARSA
Input: €, oy
Initialize Q(s,a) for all s € S,a € A arbitrarily except Q(terminal,-) =0
7 < e-greedy policy with respect to @

for each episode do
t+1

Set s; as the starting state
Choose action a; from policy 7(s1)
while until episode terminates do
Choose action a; from policy m(st)
Take action a; and observe reward 7, and next state s;y1
Choose action a1 from policy 7(s¢t1)
Q(st,at) + Q(s¢,a¢) + oy (ry + YQ(St41, ar+1) — Q(St, ar))
7 < e-greedy with respect to @ ™
tt+1 g Kong, Shenzhen
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Temporal-Difference (TD) Methods for Control

SARSA gets its name from the parts of the trajectory used in the update equation.

® We can see that to update the Q-value at state-action pair (s, a), we need the

reward, next state and next action, thereby using the values (s,a,r,s’,a’).

® SARSA is an on-policy method because the actions a and a’ used in the update
equation are both derived from the policy that is being followed at the time of the
update.
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Temporal-Difference (TD) Methods for Control

Lemma
SARSA for finite-state and finite-action MDPs converges to the optimal action-value,
ie., Q(s,a) = Q*(s,a), if the following two conditions hold:

1. The sequence of policies m from is GLIE

2. The step-sizes oy satisfy the Robbins-Munro sequence such that

oo

Mo Yo
t=1

t=1
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Importance sampling for off-policy TD

Recall that our TD update took the form
V(s)— V(s)+a(r+yV(s)— V(s)).

Suppose that like in off-policy Monte-Carlo policy evaluation, we have data from a

policy 7y, and we want to estimate the value of policy m.. This new update will be:

V7 (s) = V() + <Zbgz || 3 (r+yV™(s') - V”e(s))) .
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Importance sampling for off-policy TD

e Off-Policy TD uses one trajectory sample instead of sampling the entire trajectory
like in Monte Carlo, so we only incorporate the likelihood ratio from one step, so

Off-Policy TD also has a significantly lower variance than Monte Carlo.
® 71, does not need to be the same at each step, but we do need to know the

probability for every step. As is in Monte Carlo, we need the two policies to have

the same support. That is, if m.(a|s)- V™(s") > 0, then my(a|s) > 0.
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Q-learning

We do not need to leverage importance sampling, instead, we can maintain the Q

estimates and bootstrap the value of the best future action. Recall our SARSA update:

Q(st,ar) < Q(st,ar) + e (re + YQ(St+1,ar+1) — Q(st,at))

but we can instead bootstrap the Q value at the next state to get the following update:

Q(st;ar) < Q(st ar) + o <rt +ymax Q(st+1,a") — Q(Shat)) :

The select action is not necessarily the same as the one we would derive from the
g A& T LK E RN
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Q-learning

Algorithm 5: Q-learning with e-greedy exploration

Input: €, a,v
Initialize Q(s,a) for all s € S,a € A arbitrarily except Q(terminal,-) =0
7 + e-greedy policy with respect to @

for each episode do
t+1

Set s; as the starting state
while until episode terminates do
Sample action a; from policy 7(s;)
Take action a; and observe reward r; and next state sy
Q(s¢,at) — Q(s¢,a¢) + a(ry + ymaxy Q(st41,a") — Q(s¢,a¢))
7 + e-greedy policy with respect to @
t—t+1 )

return Q, 7
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Maximization bias

Example: Game of coins Suppose there are two identical fair coins, but we do not know
that they are fair or identical. If a coin lands on heads, we get one dollar and if a coin

lands on tails, we lose a dollar. We ask the following two questions.
1. Which coin will yield more money for future flips?

2. How much can we expect to win/lose per flip using the coin from question 17
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Maximization bias

In an effort to answer this question:
® we flip each coin once. We then pick the coin that yields more money as the
answer to question 1.
® We answer question 2 with however much that coin gave us.

For example, if coin 1 landed on heads and coin 2 landed on tails, we would answer

question 1 with coin 1, and question 2 with one dollar.
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Maximization bias

We examine the possible scenarios for the outcome of this procedure.

e |f at least one of the coins is heads, then our answer to question 2 is one dollar.

e |f both coins are tails, then our answer is negative one dollar.
Thus, the expected value of our answer to question 2 is 3 x (1)+7 x (—1) = 0.5. This
gives us a higher estimate of the expected value of flipping the better coin than the true
expected value of flipping that coin.
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Maximization bias

This problem comes from the fact that we are using our estimate to both choose the

better coin and estimate its value. We can alleviate this by separating these two steps.
® Flip the coin to choose the better coin,
® Flip the better coin again and use this value as your answer for question 2.

The expected value of this answer is now 0, which is the same as the true expected

value of flipping either coin.
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Double Q-learning

Double Q-learning:

® We can maintain two independent unbiased estimates, @1 and @, and when we
use one to select the maximum, we can use the other to get an estimate of the

value of this maximum.

® The e-greedy policy with respect to Q1 + @ indicates that the e-greedy policy

where the optimal action at state s is equal to argmax, Q1(s,a) + Qz(s, a).
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Double Q-learning

Algorithm 6: Double Q-learning

Input: ¢, a,v

Initialize Q1 (s, a), @Q2(s,a) for all s € S,a € A arbitrarily
t«0

m + e-greedy policy with respect to @, + Q2

while true do
Sample action a; from policy 7 at state s;

Take action a+ and observe reward r; and next state s;41
if with 0.5 probability then
| @1(st,at) + Qu(st, ar) + a(re +7Q2(st+1, arg maxy Q1 (se+1,a’)) — Q1(st, at))
else
l_ Qz(s;:, at) — Qz(sg, ag) + a(n +7Q1(St+1, arg maxg: Q2(5t+1, a’)) - Qz(st, ﬂ,t))
m + e-greedy policy with respect to Q1 + Q2
Lte—t+1
return m, Q1 + @2 D
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Question and Answering (Q&A)
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