Lecture 13 - Monte-Carlo Tree Search

Guiliang Liu
The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

Model-based Planning and Learning

Planning: A computational process that takes a model as input and produces or
improves a policy for interacting with the modeled environment.

State-space Planning: A search through the state space for an optimal policy or an
optimal path to a goal. It computes value functions by updates or backup operations

applied to simulated experience.

Simulated backups _
model —— > Experience ——— > values > policy.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

EH
cIrren

3

2/17

Model Learning

"What if we do not have the model?" — "Learn the model!"

In the model learning regime we assume that the state and action spaces S, A are
known and typically we also assume conditional independence between state transitions

and rewards, i.e.,

P(ser1,rt | St;at) = P(seq1 | st,a0)P(rt | st,ae) -
Hence learning a model consists of two main parts of learning the reward function

R(-|s,a) (assumed to be a deterministic) and the transition distribution P(- | 5,a).
B #»vxxeorn

S The Chinese University of Hong Kong, Shenzhen

Y
cIrren

3

3/17

Model Learning

Given a set of real trajectories {sf,af,rf,...,sk}K | the model learning can be posed

as a supervised learning problem.
1) Learning the reward function R(s,a) — a regression problem.
2) Learning the transition function P(s’ | s,a) — a density estimation problem. The key

steps are:
® Pick a suitable family of parametrization models (e.g., Neural Network).
® Choose an appropriate loss function (e.g., Mean Squared Error (MSE)).

® Update the models based on the trajectories data.
2 &% kg R

c 54“,‘.,'_ The Chinese University of Hong Kong, Shenzhen

3/17

Simulation-based Search

Given access to a model of the world, simulation-based search methods seek to identify

the best action to take based on forward search and simulations.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

PG
ety

3

4/17

Simulation-based Search

Uninformed search is a kind of generic search algorithm which are given no extra

information other than an abstract problem definition.

Depth
First
Search

Breadth
First
Search

O © O ©

Source of the image: link

7w T XK FRID
The Chinese University of Hong Kong, Shenzhen

4/17

https://dev.to/danimal92/difference-between-depth-first-search-and-breadth-first-search-6om

Simulation-based Search

During the research, a search tree is built with the current state as the root and its

children nodes as possible next states generated using the model.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

,,

Source of the image: link

g

4/17

https://www.researchgate.net/figure/Game-tree-of-Tic-Tac-Toe-with-the-possible-combinations-of-the-first-two-moves_fig1_220795557

Simulation-based Search

FER YD
7 of Hong Kong, Shenzhen

x

4/17

https://commons.wikimedia.org/wiki/File:Tic-tac-toe-full-game-tree-x-rational.jpg

Simulation-based Search
xx xx

X X X
X{—»f0
o X o X X[x[e

=<[o
=[x

x
>
>

[o[=
<ol]
NED

°

x| <

x
=
BRI <o
=] el [
o[= =
5] [o[x[=
=
=

S[<[e
<]
o<

BEE
ol
o[<[=

BEE
“o[=

ox
x| x cg.xo
xo of To 00
<[5]
xo
Lk B CRID
University of Hong Kong, Shenzhen
ey

Source of the image: link
4/17

https://commons.wikimedia.org/wiki/File:Tic-tac-toe-full-game-tree-x-rational.jpg

Simulation-based Search

However, for some complex games like Go (which has an average branch factor of 250),

using an uninformed search becomes computationally intractable:
® At step 1: 250
® At step 2: 250° = 62500
® At step 3: 2503 = 15,625,000
® At step 4: 250* = 3,906,250,000
* At step 5: 250° = 976,562,500,000

® a...

e At step 10: 2500 = 953,674,316,406,250,000,000,000
A brief guide to Go: link

FEF XK FEEID

$e . The Chinese University of Hong Kong, Shenzhen

4/17

https://www.youtube.com/watch?v=5PTXdR8hLlQ&ab_channel=Udacity

Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is based on two principles:

® The true value of a state can be estimated using average returns of random

simulations.

® These values can be used to iteratively adjust the policy to focus on high-value

regions of the search space.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

5/17

Monte-Carlo Tree Search

MCTS progressively constructs a partial search tree starting out with the current node

set as the root.
® The tree consists of nodes corresponding to states s.
® Each node stores statistics such as a count for each state-action pair Ns , and the
Monte-Carlo action value estimates Q(s, a).
At its core, MCTS consists of repeated iterations of 4 steps(in practice constrained by

computing time and resources):

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

EH
cIrren

3

5/17

Monte-Carlo Tree Search

Selection. Starting at the root node, we select child nodes recursively in the tree till a

non-terminal leaf node is reached.

s
]
-

. Y

e

R

(a) Selection (b) Expansion (c) Simulation (d) Backpropagation ¥
b5y, [heChinese Uruversity of Hong Kong, Shenzhen

5/17

Monte-Carlo Tree Search

Expansion. The chosen leaf node is added to the search tree.

\

y— t
{f

<~/

R
(a) Selection (b) Expansion (c) Simulation (d) Backpropagation

BT K FEGEID
The Chinese University of Hong Kong, Shenzhen

5/17

Monte-Carlo Tree Search

Simulations. Simulations are run from this node to produce an estimate of the

outcomes.

s
]
-

. Y

e

R

(a) Selection (b) Expansion (¢) Simulation (d) Backpropagation ¥
b5y, [heChinese Uruversity of Hong Kong, Shenzhen

5/17

Monte-Carlo Tree Search

Simulations. The values obtained in the simulations are backpropagated through the
tree by following the path from the root to the chosen leaf in reverse and updating the

statistics of the encountered nodes.

R)
(a) Selection (b) Expansion (c) Simulation (d) Backpropagation "8Xens-Shenzhen

5/17

Implementation for MCTS

MCTS iteratively grows the search tree by the above four steps. The algorithm is:

Algorithm 1: General MCTS algorithm
Input S0
Create root node sg

while within computational budget do
L s + T'reePolicy(so)

A + Simulation(si)
Backprop(si, A)
Return arg max, Q(sg,a)

P Xk FGRID

Chinese University of Hong Kong, Shenzhen

6/17

Implementation for MCTS

Variants of MCTS generally contain modifications to the two main policies involved.

® Tree policy. To chose actions for nodes in the tree based on the stored statistics.

Variants include greedy, UCB.

® Rollout policy. For simulations from leaf nodes in the tree. Variants include

random simulation, default policy network in the case of AlphaGo.

FEF XK FEEID

o)
R
38 The Chinese University of Hong Kong, Shenzhen

EH
cIrren

3

6/17

Implementation for MCTS

In the backdrop stages, we increment the visit count (/N ;) and update the action

values Q(s,a) on all the traversed edges (s, a):

e Update the state-action value:

Q(57 a) * NS,a + R(SL) + Zste[s—mL] ytr(st)
Ns7a +1

Q(s,a) =

where s; denotes the leaf note, R(s;) denotes the average cumulative rewards

calculated during simulation, and r(s;) denotes the intermediate rewards.

[] ISl . =
Increment the visit count: Ns, = Ns 5+ 1. FRFLEEEID

The Chinese University of Hong Kong, Shenzhen

EH
cIrren

3

6/17

Implementation for MCTS

Greedy Tree Search. To implement MCTS, we can 1) choose actions greedily
amongst the tree nodes in the first stage and 2) generate rollouts using a random policy

in the simulation stage.

Algorithm 2: Greedy MCTS algorithm
Input s
Create root node sg

while within computational budget do
Snext < S0

while |Children(speqt)| # 0 do
L a arg max,e 4 Q(Sneat, @)
Sneat < NextState(snegt,a)
A < RandomSimulation(spext)
Backprop(snext, A)

Return arg max, Q(so, a) D)
Ty 1T et iuveiony o Hong Kong, Shenzhen

6/17

Implementation for MCTS

Upper Confidence Tree Policy. Using a greedy policy may avoid actions after

observing even one bad outcome despite the significant uncertainty about its true value.

To handle it, we can pick the action that maximizes the upper confidence bound on the

value of the action, which is:

Algorithm 3: Upper Confidence MCTS algorithm

Input sy
Create root node sg

while within computational budget do
Snext < S0

while |Children(spest)| # 0 do
L a < argmax,c 4 Q(s,a) + 4/ Zk)g]\;#m
Snext < NextState(spegt, a) '
A + RandomSimulation(spest) -
Backprop(sneat, A) inzllgong, Shenzhen
Return arg max, Q(so, a)

6/17

Implementation for MCTS

Predictor Upper Confidence Tree. When given a prior policy (predictor) my, we can

have the following updates:
® |nstead of doing random simulation, we can do policy rollout with the policy &.

® We can exploit the prior knowledge by applying the predictor UCB as follows:

\/ N
a <« argmaxQ(s,a) + cpuctiro(a]s)M
acA Ns,a +1

G
cIrren

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

3

6/17

Implementation for MCTS

Algorithm 4: Predictor Upper Confidence MCTS algorithm

Input sg, 7
Create root node sg

while within computational budget do
Snext < S0

while |Children(spezt)| # 0 do
a < argmax,c 4 Q(s, a) + cpuctmo(als) 7%’
Sneat — NextState(spest, a)
A + StrategicSimulation(Snegt, T0)
Backprop(spegt, A)
Return arg max, Q(so,a)

FEF XK FEEID

o The Chinese University of Hong Kong, Shenzhen

6/17

Implementation for MCTS

Predictor Upper Confidence Tree with Value Priors. When given a prior value

function Vg, we can further update our algorithm:

® |nstead of applying the results with random simulation, we can combine them with

our value outputs:

V(s) = (1—A)Vo(s) + AR(s)

where R(s) is the estimation from simulation (policy rollout)

EH
cIrren

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

3

6/17

Implementation for MCTS

Algorithm 5: Predictor Upper Confidence MCTS algorithm with Priors

Input S0, 70, Vb
Create root node sg

while within computational budget do
Sneat < S0

while |Children(spest)| # 0 do
Vv Eb Ns,b

a < argmax,c 4 Q(s,a) + cpuctm)(a|s)m
Snext < NextState(speqt,a)
A «+ StrategicSimulation(Spegt, T0)
V(Snezt) = (1 - A)%(snezt) + AA
| Backprop(snest; V (Snest))
Return argmax, Q(sg,a)

FEF XK FEEID

o The Chinese University of Hong Kong, Shenzhen

6/17

Advantages of MCTS

The main advantages of MCTS include

1.

States are evaluated dynamically, that is, MDP is only solved from the current

state, unlike dynamic programming.

It efficiently combines planning and sampling to break the curse of dimensionality

in complicated games like Go.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

7/17

AlphaGo: A Case Study

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison!, Arthur Guez!, Laurent Sifre!, George van den Driessche!,

Julian Schrittwieser!, loannis Antonoglou!, Veda Panneershelvam!, Marc Lanctot!, Sander Dieleman', Dominik Grewe!,
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap!, Madeleine Leach!, Koray Kavukcuoglu',

Thore Graepel' & Demis Hassabis!

AlphaGo is the first computer program to defeat a professional human Go player,

the first to defeat a world champion, and is arguably the strongest Go player in history.

Introducing the Deepmind AlphaGo: link
HEP K FEEID

How Google Deepmind AlphaGo works? link The Chinese University of Hong Kong, Shenzhen

8/17

https://www.youtube.com/watch?v=SUbqykXVx0A&t=58s&ab_channel=GoogleDeepMind
https://www.youtube.com/watch?v=gyBvXDLYFfg&ab_channel=rakstreams

AlphaGo: A Case Study

AlphaGo is a computer program that combines Monte Carlo simulation with value and
policy networks.
® |t uses value networks to evaluate board positions and policy networks to select
moves. These deep neural networks are trained by combining supervised learning

from human expert games, and reinforcement learning from games of self-play.
e Without any lookahead search, the neural networks play Go at the level of state
of-the-art Monte Carlo tree search programs that simulate thousands of random

games of self-play by combining Monte Carlo simulation with value and policy

networks B &+ xxsoma
&.}:%‘ The Chinese University of Hong Kong, Shenzhen

)

3

8/17

AlphaGo: A Case Study

Supervised learning of policy networks. The SL policy network ps(als) (13-layer,
57.0% accuracy) and rollout policy network pr(als) (2-layer, 24.2% accuracy) predicts

expert moves in the game of Go using supervised learning.

a b

Rollout policy SL policy network RL policy network Value network Policy network Value network

P Pq

pﬁ

Y

Human expert positions Self-play positions

Vg P (@ Is) vy (s)

SIOMIBU [BINSN

elRq

g, Shenzhen

8/17

AlphaGo: A Case Study

Reinforcement learning of policy networks. 1) The RL policy network p, is
identical in structure to the SL policy network, and its weights p are initialized to the

same values, p, = ps.

a b
Rollout policy SL policy network RL policy network Value network Policy network Value network
z
P, P, 2 »als) v (s)

B -
>
Q
3

Pollcy gradient =]
=

.
. .
I N s’ g, Shenzhen

8/17

— i R
%ﬁ‘

Human expert positions Self-play positions

eleq

AlphaGo: A Case Study

Reinforcement learning of policy networks. 2) It plays games between the current
policy network p, and a randomly selected previous iteration of the policy network. The
reward function r(s) is zero for all non-terminal time steps t < T. At the end of the
game, r(s) is 41 for winning and -1 for losing. p, is updated by policy gradient.

a b

Rollout policy SL policy network RL policy network Value network Policy network Value network

4

Human expert positions Self-play positions

P (@ls) vy ()
.

by <

®
. O
g, Shenzhen
s s

8/17

SIOMIBU [BINSN

Peo § P
5
\30&

e

AlphaGo: A Case Study

Reinforcement learning of value networks. Value function vy(s) that predicts the
outcome from positions of games played by RL policy network p,. This neural network
has a similar architecture to the policy network, but outputs a single prediction. The

value network is trained by regression on state-outcome pairs (Monte Carlo method).

a b
Rollout policy SL policy network RL policy network Value network Policy network Value network

z
3 Py, @ Is) vy (s)
s -
>
e
=

Policy gradient S
=

by <

®
0 O
g, Shenzhen
s s”

8/17

P § P
5
o°°‘?'

M
\/

Human expert positions Self-play positions

elRq

AlphaGo: A Case Study

Searching with policy and value networks. Tree Structure. Each edge (s,a) of the
search tree stores an action value Q(s,a), visit count N(s,a), and prior probability

P(s,a). The tree starts from the root state

a Selection b Expansion c Evaluation d Backup

Jﬁiw) e 3 e Jﬂ\

Q +u(P) max

7/
R T S

7N)

G W at

H5% g, heChinese University of Hong Kong, Shenzhen

8/17

AlphaGo: A Case Study

Searching with policy and value networks. 1) Selection. At each time step t of

each simulation, an action a; is selected from state s;:

a; = argmax(Q(st,a) + u(st,a))

where u(s,a) o 1?/\(/15,)3)'
a Selection b Expansion c Evaluation d Backup
B B B B
el Q'+l X . N
L 2 : S L e - £
Q +u(P) ./nax

7/
e (Eh B *'9(3;1) e3¢ ﬁi f#

N o]

& |
(¥4%) s IR JITE < ,Shenzhen

8/17

AlphaGo: A Case Study

Searching with policy and value networks. 2) Expansion. When the traversal
reaches a leaf node s; at step L, the leaf node may be expanded. The leaf position s; is
processed just once by the SL policy network ps. The output probabilities are stored as

prior probabilities P for each legal action a.

a Selection b Expansion c Evaluation d Backup

B # Lt B

maXy Q+ulP) N

W) B (3 1 et #

N\ i
() @ s e

8/17

js]
+
s
3
N
&

AlphaGo: A Case Study

Searching with policy and value networks. 3) Evaluation. The leaf node is
evaluated by the value network vg(s;) and the outcome R(s;) of a random rollout
played out until terminal step T using the fast rollout policy py; these evaluations are
combined: V(se) = (1—A)ve(s.) +AR(s.)

a Selection b Expansion c Evaluation d Backup

O il i
AR R S - S R S D

Q +u(P) max

/
B (B ® «(HF) # % #

N :
TE: I TRE A N p—

8/17

AlphaGo: A Case Study

Searching with policy and value networks. 4) Backup. The action values and visit
counts of all traversed edges are updated. Each edge accumulates the visit count and

mean evaluation of all simulations passing through that edge
n n

N(s,) :;1(5,5;,/) and Q(s,) = N(; 5 ;1(s,a,/)V(s[)
% .., H# w i

Q +ulP) ./nax

/
B () 3 «(FE) B HE

N

)

;,Shenzhen

8/17

AlphaGo Performance

Evaluating the playing strength of AlphaGo.

a b c
3 3,500 3,500
g
g
8 3,000
-]
5
=
2,500
g 8% 2,000
T S
H e
g 1,500
1,000+
5004
0= 0-
gz 2z g é} E g "é’ Rollouts @ @ ° ° Threads 1 2 4 8 1632 40 jmm gom—it 12 24 40 64
25
4] £z < 29 9 Value network @ e o o GPUS ———g——— 1 2 4 8 64112176280
ge © g Policynetwork @ ® @ ° L Il !
@ Single machine Distributed en

[m] = =

AlphaGo Performance

An early version of AlphaGo was tested on hardware with various numbers of CPUs and

GPUs, running in asynchronous or distributed mode.

Configuration | Search _ | No.of CPU _ | No.of GPU _ | Elo rating

Configuration and performance

" | threads
Distributed 64
Distributed 40
Distributed 24
Distributed 12
Single 40
Single 40
Single 40
Singlell p-10-11 40

1,920
1,202
764
428
48
48
48
48

280
176
112
64

8
4
2

3,168
3,140
3,079
2,937
2,890
2,850
2,738
2,181

KGRI
se University of Hong Kong, Shenzhen

9/17

AlphaGo Performance

Performance of AlphaGo and its family.

Configuration and strength(6?]

Versions L4 Hardware ¢+ Elorating ¢ Date ¢ Results *
AlphaGo Fan 176 GPUs,°%l distributed | 3,144[521 | Oct 2015 5:0 against Fan Hui
AlphaGo Lee 48 TPUs,%%l distributed 3,739521 | Mar 2016 4:1 against Lee Sedol
60:0 against professional players;
AlphaGo Master 4 TPUs, 5% single machine | 4,858/52] | May 2017 g p ‘? Y
Future of Go Summit
100:0 against AlphaGo Lee
AlphaGo Zero (40 block) | 4 TPUs,%%! single machine | 5,185[521 | Oct 2017)
89:11 against AlphaGo Master
AlphaZero (20 block) 4 TPUs, single machine 5,018(631 | Dec 2017 | 60:40 against AlphaGo Zero (20 block)

FH P XK ECRID

The Chinese University of Hong Kong, Shenzhen

9/17

AlphaGo Zero: Starting from scratch

Mastering the game of Go without
human knowledge

David Silver'*, Julian Schrittwieser*, Karen Simonyan'*, Joannis Antonoglou!, Aja Huang', Arthur Guez',
Thomas Hubert!, Lucas Baker!, Matthew Lai!, Adrian Bolton!, Yutian Chen!, Timothy Lillicrap’, Fan Hui', Laurent Sifre!,
George van den Driessche!, Thore Graepel! & Demis Hassabis!

AlphaGo Zero: Starting from scratch: link

AlphaGo Zero: Discovering new knowledge: link £ # X k£ GEI)

o The Chinese University of Hong Kong, Shenzhen

10/17

https://www.youtube.com/watch?v=tXlM99xPQC8&ab_channel=GoogleDeepMind
https://www.youtube.com/watch?v=WXHFqTvfFSw&ab_channel=GoogleDeepMind

AlphaGo Zero: Starting from scratch

AlphaGo Zero differs from the previous AlphaGo in several important aspects.

Zero is trained solely by self-play reinforcement learning, starting from random

play, without any supervision or use of human data.

Zero uses only the black and white stones from the board as input features without

hand-engineered features.
Zero uses a single neural network, rather than separate policy and value networks.

Zero uses a simpler tree search that relies upon this single neural network to

evaluate positions and sample moves, without performing any Monte Carlo rollouts
B ==+ xx 20

et The Chinese University of Hong Kong, Shenzhen

3

10/17

Go v.s., Zero: Different Input Features

Input features from AlphaGo:

Extended Data Table 2 | Input features for neural networks

Feature #of planes Description

Stone colour 3 Player stone / opponent stone / empty

Ones 1 A constant plane filled with 1

Turns since 8 How many turns since a move was played

Liberties 8 Number of liberties (empty adjacent points)

Capture size 8 How many opponent stones would be captured

Self-atari size 8 How many of own stones would be captured

Liberties after move 8 Number of liberties after this move is played

Ladder capture 1 Whether a move at this point is a successful ladder capture

Ladder escape 1 Whether a move at this point is a successful ladder escape

Sensibleness 1 Whether a move is legal and does not fill its own eyes

Zeros 1 A constant plane filled with 0

Player color 1 Whether current player is black

ECRID

Feature planes used by the policy network (all but last feature) and value network (all features). yofHOng Kong, Shenzhen

11/17

Go v.s., Zero: Different Input Features

Input features from AlphaGo Zero:

ABCDEFGHJKLMNOPQRST

19 b 19
18 18
17() 17
16 @ 16
15 15
14 14
13 13
12 12
1 1
10 10
9 9
8 8
7 7
[[
5 5
4 4
3 3
2 2
1 1

FEF XK FEEID

BEHEENEFERHEELNEEENS Y The Chinese University of Hong Kong, Shenzhen

11/17

Go v.s., Zero: Different Neural Networks

This neural network outputs both move probabilities and a value, (p,v) = fg(s). This
neural network combines the roles of both policy network and value network into a
single architecture.
® The vector of move probabilities p represents the probability of selecting each
move a (including pass), p, = Pr(als).
® The value v is a scalar evaluation, estimating the probability of the current player

winning from position s.

FEF XK FEEID

o)
R
38 The Chinese University of Hong Kong, Shenzhen

EH
cIrren

3

12/17

Go v.s., Zero: Different Neural Networks

Neural Network Structure in AlphaGo Zero:

b Neural network training

n n

B CRID
y of Hong Kong, Shenzhen

12/17

Go v.s., Zero: Different Neural Networks

Neural network training. The neural network parameters 6 are updated to:
® Maximize the similarity of the policy vector p; to the search probabilities 7;.

® Minimize the error between the predicted winner v; and the game winner R.
(= (R—w)* —mlogpe +cl|6]> (1)

where R € {—1,+1} denotes the winner of this game.

® The new parameters are used in the next iteration of self-play.

EH
cIrren

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

3

12/17

Go v.s., Zero: Different Learning Methods

Self-play RL: The program plays a game si,...,sT against itself.
® |n each position st, an MCTS is executed using the latest neural network fy.
® Moves are selected according to the search probabilities computed by the MCTS,
ar ~ Tt
® The terminal position st is scored according to the rules of the game to compute
the game winner R.

where z = R denotes the final winner.

FEF XK FEEID

o)
R
38 The Chinese University of Hong Kong, Shenzhen

EH
cIrren

3

13/17

Go v.s., Zero: Different Learning Methods

a Self-play s S, s s

where z = R denotes the final winner.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

13/17

Go v.s., Zero: Different Research Tree
Zero uses a simpler tree search in the following ways:
® Rely upon this single neural network to evaluate positions and sample moves.

® Do not perform any Monte Carlo rollouts.

a Select b Expand and evaluate € Backup d Play

4)

Repeat

i # . s
SN W ml

Q+U ﬁa}\ Q+U r./ \r /l -\Q Ao NLA A
o=, g%\l ﬁ | vm ﬁ

COETTEy T IS VY SIony Ui L avg s, Shenzhen

14/17

AlphaGo Zero Performance
Learning curve for AlphaGo Zero using a larger 40-block residual network over 40 days

(Left), and Final performance of AlphaGo Zero (Right).

a b
5,000 5,0001
4,000+ ’['//—/—_P"' 4,000
o 3,000+]
£ 2,000 2 3,000
= © 4
o A1 4 s
m 1000 22,0001
0, — AlphaGo Zero 40 blocks]
-1,000 --- AlphaGo Master 1,0001
2,000 -+« AlphaGo Lee 0.
0 5 10 15 20 25 30 35 40
Days &
&00

AlphaZero: Masters Chess, Shogi,and Go

COMPUTER SCIENCE

A general reinforcement learning
algorithm that masters chess, shogi,
and Go through self-play

David Silver>*t, Thomas Hubert'*, Julian Schrittwieser'*, Ioannis Antonoglou’,
Matthew Lai', Arthur Guez', Marc Lanctot', Laurent Sifre', Dharshan Kumaran’,
Thore Graepel’, Timothy Lillicrap’, Karen Simonyan’, Demis Hassabis't

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

16 /17

AlphaZero: Masters Chess, Shogi,and Go

e Generalize the self-play approach into a single AlphaZero algorithm that can
achieve superhuman performance in many challenging games.

e Starting from random play and given no domain knowledge except the game rules,
AlphaZero convincingly defeated a world champion program in the games of chess

and shogi (Japanese chess), as well as Go.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

PG
ety

3

16 /17

AlphaZero: Masters Chess, Shogi,and Go

Chess
AIphaZero vs. Stockflsh

W:29.0% D:70.6% L:0.4%

o
o

W:20% D:97.2% L:0.8%

Shogi

AlphaZero vs. EImo

Go

AlphaZero vs. AG0

2HE T E S EHE

M &

Akl edkdedia

b} il

B\ R 2| E &R EE

W:842% D:22% L:13.6%

W:98.2% D:0.0% L: 1.8%

W: 68.9% L:31.1%

W:53.7% . ,L,4_63f F_ (i;’ﬁi}l])

& The Chinese University of Hong Kong, Shenzhen

[m] = =

16 /17

AlphaZero: Masters Chess, Shogi,and Go

A B C

5000 Chess Shogi Go .
I/\A/—“W« //—/\/,‘dv

4000

o 3000

Y 5000 —— AlphaZero

—— AlphaZero —— AlphaZero —— AlphaGo Zero

1000 —— Stockfish —— Elmo —— AlphaGo Lee

0
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Thousands of Steps Thousands of Steps Thousands of Steps

B LK EGERID
The Chinese University of Hong Kong, Shenzhen

16 /17

Question and Answering (Q&A)

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

17/17

