
Lecture 13 - Monte-Carlo Tree Search

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

Model-based Planning and Learning

Planning: A computational process that takes a model as input and produces or

improves a policy for interacting with the modeled environment.

State-space Planning: A search through the state space for an optimal policy or an

optimal path to a goal. It computes value functions by updates or backup operations

applied to simulated experience.

model
Simulated
Experience values policy .

backups

2 / 17

Model Learning

"What if we do not have the model?" → "Learn the model!"

In the model learning regime we assume that the state and action spaces S,A are

known and typically we also assume conditional independence between state transitions

and rewards, i.e.,

P(st+1, rt | st ,at) = P(st+1 | st ,at)P(rt | st ,at) .

Hence learning a model consists of two main parts of learning the reward function

R(· | s,a) (assumed to be a deterministic) and the transition distribution P(· | s,a).

3 / 17

Model Learning

Given a set of real trajectories {skt ,akt , rkt , . . . ,skT}Kk=1, the model learning can be posed

as a supervised learning problem.

1) Learning the reward function R(s,a) → a regression problem.

2) Learning the transition function P(s ′ | s,a) → a density estimation problem. The key

steps are:

• Pick a suitable family of parametrization models (e.g., Neural Network).

• Choose an appropriate loss function (e.g., Mean Squared Error (MSE)).

• Update the models based on the trajectories data.

3 / 17

Simulation-based Search

Given access to a model of the world, simulation-based search methods seek to identify

the best action to take based on forward search and simulations.

4 / 17

Simulation-based Search
Uninformed search is a kind of generic search algorithm which are given no extra

information other than an abstract problem definition.

Source of the image: link
4 / 17

https://dev.to/danimal92/difference-between-depth-first-search-and-breadth-first-search-6om

Simulation-based Search

During the research, a search tree is built with the current state as the root and its

children nodes as possible next states generated using the model.

Source of the image: link

4 / 17

https://www.researchgate.net/figure/Game-tree-of-Tic-Tac-Toe-with-the-possible-combinations-of-the-first-two-moves_fig1_220795557

Simulation-based Search

Source of the image: link

4 / 17

https://commons.wikimedia.org/wiki/File:Tic-tac-toe-full-game-tree-x-rational.jpg

Simulation-based Search

Source of the image: link
4 / 17

https://commons.wikimedia.org/wiki/File:Tic-tac-toe-full-game-tree-x-rational.jpg

Simulation-based Search
However, for some complex games like Go (which has an average branch factor of 250),

using an uninformed search becomes computationally intractable:

• At step 1: 250

• At step 2: 2502 = 62500

• At step 3: 2503 = 15,625,000

• At step 4: 2504 = 3,906,250,000

• At step 5: 2505 = 976,562,500,000

• a . . .

• At step 10: 25010 = 953,674,316,406,250,000,000,000

A brief guide to Go: link

4 / 17

https://www.youtube.com/watch?v=5PTXdR8hLlQ&ab_channel=Udacity

Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is based on two principles:

• The true value of a state can be estimated using average returns of random

simulations.

• These values can be used to iteratively adjust the policy to focus on high-value

regions of the search space.

5 / 17

Monte-Carlo Tree Search

MCTS progressively constructs a partial search tree starting out with the current node

set as the root.

• The tree consists of nodes corresponding to states s.

• Each node stores statistics such as a count for each state-action pair Ns,a and the

Monte-Carlo action value estimates Q(s,a).

At its core, MCTS consists of repeated iterations of 4 steps(in practice constrained by

computing time and resources):

5 / 17

Monte-Carlo Tree Search
Selection. Starting at the root node, we select child nodes recursively in the tree till a

non-terminal leaf node is reached.

5 / 17

Monte-Carlo Tree Search

Expansion. The chosen leaf node is added to the search tree.

5 / 17

Monte-Carlo Tree Search
Simulations. Simulations are run from this node to produce an estimate of the

outcomes.

5 / 17

Monte-Carlo Tree Search
Simulations. The values obtained in the simulations are backpropagated through the

tree by following the path from the root to the chosen leaf in reverse and updating the

statistics of the encountered nodes.

5 / 17

Implementation for MCTS

MCTS iteratively grows the search tree by the above four steps. The algorithm is:

6 / 17

Implementation for MCTS

Variants of MCTS generally contain modifications to the two main policies involved.

• Tree policy. To chose actions for nodes in the tree based on the stored statistics.

Variants include greedy, UCB.

• Rollout policy. For simulations from leaf nodes in the tree. Variants include

random simulation, default policy network in the case of AlphaGo.

6 / 17

Implementation for MCTS

In the backdrop stages, we increment the visit count (Ns,a) and update the action

values Q(s,a) on all the traversed edges (s,a):

• Update the state-action value:

Q(s,a) =
Q(s,a)∗Ns,a+R(sL)+

∑
st∈[s→sL]

γtr(st)

Ns,a+1

where sL denotes the leaf note, R(sL) denotes the average cumulative rewards

calculated during simulation, and r(st) denotes the intermediate rewards.

• Increment the visit count: Ns,a = Ns,a+1.

6 / 17

Implementation for MCTS
Greedy Tree Search. To implement MCTS, we can 1) choose actions greedily

amongst the tree nodes in the first stage and 2) generate rollouts using a random policy

in the simulation stage.

6 / 17

Implementation for MCTS
Upper Confidence Tree Policy. Using a greedy policy may avoid actions after

observing even one bad outcome despite the significant uncertainty about its true value.

To handle it, we can pick the action that maximizes the upper confidence bound on the

value of the action, which is:

6 / 17

Implementation for MCTS

Predictor Upper Confidence Tree. When given a prior policy (predictor) π0, we can

have the following updates:

• Instead of doing random simulation, we can do policy rollout with the policy π.

• We can exploit the prior knowledge by applying the predictor UCB as follows:

a← argmax
a∈A

Q(s,a)+ cpuctπ0(a|s)
√∑

bNs,b

Ns,a+1

6 / 17

Implementation for MCTS

6 / 17

Implementation for MCTS

Predictor Upper Confidence Tree with Value Priors. When given a prior value

function V0, we can further update our algorithm:

• Instead of applying the results with random simulation, we can combine them with

our value outputs:

V (s) = (1−λ)V0(s)+λR(s)

where R(s) is the estimation from simulation (policy rollout)

6 / 17

Implementation for MCTS

6 / 17

Advantages of MCTS

The main advantages of MCTS include

1. States are evaluated dynamically, that is, MDP is only solved from the current

state, unlike dynamic programming.

2. It efficiently combines planning and sampling to break the curse of dimensionality

in complicated games like Go.

7 / 17

AlphaGo: A Case Study

AlphaGo is the first computer program to defeat a professional human Go player,

the first to defeat a world champion, and is arguably the strongest Go player in history.

Introducing the Deepmind AlphaGo: link

How Google Deepmind AlphaGo works? link

8 / 17

https://www.youtube.com/watch?v=SUbqykXVx0A&t=58s&ab_channel=GoogleDeepMind
https://www.youtube.com/watch?v=gyBvXDLYFfg&ab_channel=rakstreams

AlphaGo: A Case Study

AlphaGo is a computer program that combines Monte Carlo simulation with value and

policy networks.

• It uses value networks to evaluate board positions and policy networks to select

moves. These deep neural networks are trained by combining supervised learning

from human expert games, and reinforcement learning from games of self-play.

• Without any lookahead search, the neural networks play Go at the level of state

of-the-art Monte Carlo tree search programs that simulate thousands of random

games of self-play by combining Monte Carlo simulation with value and policy

networks

8 / 17

AlphaGo: A Case Study
Supervised learning of policy networks. The SL policy network pσ (a|s) (13-layer,

57.0% accuracy) and rollout policy network pπ(a|s) (2-layer, 24.2% accuracy) predicts

expert moves in the game of Go using supervised learning.

8 / 17

AlphaGo: A Case Study
Reinforcement learning of policy networks. 1) The RL policy network pρ is

identical in structure to the SL policy network, and its weights ρ are initialized to the

same values, pρ = pσ .

8 / 17

AlphaGo: A Case Study
Reinforcement learning of policy networks. 2) It plays games between the current

policy network pρ and a randomly selected previous iteration of the policy network. The

reward function r(s) is zero for all non-terminal time steps t < T . At the end of the

game, r(s) is +1 for winning and -1 for losing. pρ is updated by policy gradient.

8 / 17

AlphaGo: A Case Study
Reinforcement learning of value networks. Value function vθ (s) that predicts the

outcome from positions of games played by RL policy network pρ . This neural network

has a similar architecture to the policy network, but outputs a single prediction. The

value network is trained by regression on state-outcome pairs (Monte Carlo method).

8 / 17

AlphaGo: A Case Study
Searching with policy and value networks. Tree Structure. Each edge (s,a) of the

search tree stores an action value Q(s,a), visit count N(s,a), and prior probability

P(s,a). The tree starts from the root state

8 / 17

AlphaGo: A Case Study
Searching with policy and value networks. 1) Selection. At each time step t of

each simulation, an action at is selected from state st :

at = argmax
a

(Q(st ,a)+u(st ,a))

where u(s,a) ∝
pσ (a|s)

1+N(s,a) .

8 / 17

AlphaGo: A Case Study
Searching with policy and value networks. 2) Expansion. When the traversal

reaches a leaf node sL at step L, the leaf node may be expanded. The leaf position sL is

processed just once by the SL policy network pσ . The output probabilities are stored as

prior probabilities P for each legal action a.

8 / 17

AlphaGo: A Case Study
Searching with policy and value networks. 3) Evaluation. The leaf node is

evaluated by the value network vθ (sL) and the outcome R(sL) of a random rollout

played out until terminal step T using the fast rollout policy pπ ; these evaluations are

combined: V (sL) = (1−λ)vθ (sL)+λR(sL)

8 / 17

AlphaGo: A Case Study
Searching with policy and value networks. 4) Backup. The action values and visit

counts of all traversed edges are updated. Each edge accumulates the visit count and

mean evaluation of all simulations passing through that edge

N(s,a) =
n∑

i=1

1(s,a, i) and Q(s,a) =
1

N(s,a)

n∑
i=1

1(s,a, i)V (s iL)

8 / 17

AlphaGo Performance
Evaluating the playing strength of AlphaGo.

9 / 17

AlphaGo Performance
An early version of AlphaGo was tested on hardware with various numbers of CPUs and

GPUs, running in asynchronous or distributed mode.

9 / 17

AlphaGo Performance

Performance of AlphaGo and its family.

9 / 17

AlphaGo Zero: Starting from scratch

AlphaGo Zero: Starting from scratch: link

AlphaGo Zero: Discovering new knowledge: link

10 / 17

https://www.youtube.com/watch?v=tXlM99xPQC8&ab_channel=GoogleDeepMind
https://www.youtube.com/watch?v=WXHFqTvfFSw&ab_channel=GoogleDeepMind

AlphaGo Zero: Starting from scratch

AlphaGo Zero differs from the previous AlphaGo in several important aspects.

• Zero is trained solely by self-play reinforcement learning, starting from random

play, without any supervision or use of human data.

• Zero uses only the black and white stones from the board as input features without

hand-engineered features.

• Zero uses a single neural network, rather than separate policy and value networks.

• Zero uses a simpler tree search that relies upon this single neural network to

evaluate positions and sample moves, without performing any Monte Carlo rollouts

10 / 17

Go v.s., Zero: Different Input Features
Input features from AlphaGo:

11 / 17

Go v.s., Zero: Different Input Features
Input features from AlphaGo Zero:

11 / 17

Go v.s., Zero: Different Neural Networks

This neural network outputs both move probabilities and a value, (p,v) = fθ (s). This

neural network combines the roles of both policy network and value network into a

single architecture.

• The vector of move probabilities p represents the probability of selecting each

move a (including pass), pa = Pr(a|s).

• The value v is a scalar evaluation, estimating the probability of the current player

winning from position s.

12 / 17

Go v.s., Zero: Different Neural Networks
Neural Network Structure in AlphaGo Zero:

12 / 17

Go v.s., Zero: Different Neural Networks

Neural network training. The neural network parameters θ are updated to:

• Maximize the similarity of the policy vector pt to the search probabilities πt .

• Minimize the error between the predicted winner vt and the game winner R .

ℓ= (R−vt)
2−πt logpt + c∥θ∥2 (1)

where R ∈ {−1,+1} denotes the winner of this game.

• The new parameters are used in the next iteration of self-play.

12 / 17

Go v.s., Zero: Different Learning Methods

Self-play RL: The program plays a game s1, ...,sT against itself.

• In each position st, an MCTS is executed using the latest neural network fθ .

• Moves are selected according to the search probabilities computed by the MCTS,

at ∼ πt .

• The terminal position sT is scored according to the rules of the game to compute

the game winner R .

where z = R denotes the final winner.

13 / 17

Go v.s., Zero: Different Learning Methods

where z = R denotes the final winner.

13 / 17

Go v.s., Zero: Different Research Tree
Zero uses a simpler tree search in the following ways:

• Rely upon this single neural network to evaluate positions and sample moves.

• Do not perform any Monte Carlo rollouts.

14 / 17

AlphaGo Zero Performance
Learning curve for AlphaGo Zero using a larger 40-block residual network over 40 days

(Left), and Final performance of AlphaGo Zero (Right).

15 / 17

AlphaZero: Masters Chess, Shogi,and Go

16 / 17

AlphaZero: Masters Chess, Shogi,and Go

• Generalize the self-play approach into a single AlphaZero algorithm that can

achieve superhuman performance in many challenging games.

• Starting from random play and given no domain knowledge except the game rules,

AlphaZero convincingly defeated a world champion program in the games of chess

and shogi (Japanese chess), as well as Go.

16 / 17

AlphaZero: Masters Chess, Shogi,and Go

16 / 17

AlphaZero: Masters Chess, Shogi,and Go

16 / 17

Question and Answering (Q&A)

17 / 17

