
Lecture 12 - Model-Free Policy Evaluation

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

Monte-Carlo Policy Evaluation

An example of the Monte-Carlo method: Suppose we want to estimate how long the

commute from your house to the campus will take today.

• We have access to a commute simulator that models our uncertainty of how bad

the traffic will be, the weather, construction delays, and other variables, as well as

how these variables interact with each other.

• We estimate the expected commute time by simulating our commute many times

on the simulator and then take an average over the simulated commute times.

This is called a Monte-Carlo estimate of our commute time. Monte-Carlo method only

works in episodic environments

2 / 6

Monte-Carlo Policy Evaluation

In the context of reinforcement learning, the quantity we want to estimate is V π(s),

which is the average of returns Gt (which equals Rt without n-step truncate or

eligibility traces) under policy π starting at state s. We can thus get a Monte-Carlo

estimate of V π(s) through three steps:

1. Execute a rollout of policy π until termination many times;

2. Record the returns Gt that we observe when starting at state s;

3. Take an average of the values we get for Gt to estimate V π(s).

2 / 6

Monte-Carlo Policy Evaluation

The backup diagram for Monte-Carlo policy

evaluation. The new blue line indicates that

we sample an entire episode until termina-

tion starting at state s.

2 / 6

Monte-Carlo Policy Evaluation

First-visit Monte-Carlo: Take an average over just the first time we visit a state in each

rollout.

2 / 6

Monte-Carlo Policy Evaluation

Every-visit Monte-Carlo: Take an average over every time we visit the state in each

rollout. If we are in a truly Markovian-domain, every-visit Monte Carlo will be more data

efficient because we update our average return for a state every time we visit the state.

2 / 6

Monte-Carlo Policy Evaluation
In these Algorithms, we can remove vector S and replace the update for V π(sj ,t) with

V π(sj ,t)← V π(sj ,t)+
1

N(sj ,t)
(Gj ,t −V π(sj ,t)) .

This is because the new average is the average of N(sj ,t)−1 of the old values V π(sj ,t)

and the new return Gj ,t , giving us

V π(sj ,t) · (N(sj ,t)−1)+Gj ,t

N(sj ,t)
= V π(sj ,t)+

1
N(sj ,t)

(Gj ,t −V π(sj ,t)) ,

Replacing 1/N(sj ,t) with α in this new update gives us the more general incremental

Monte-Carlo policy evaluation.

2 / 6

Monte-Carlo Policy Evaluation

Incremental First-visit Monte-Carlo policy evaluation:

2 / 6

Monte-Carlo Policy Evaluation

Incremental Every-visit Monte-Carlo policy evaluation:

Setting α = 1/N(sj ,t) recovers the original Monte-Carlo policy evaluation algorithms

given in the above Algorithms, while setting α > 1
N(s) gives a higher weight to newer

data, which can help learning in non-stationary domains.

2 / 6

Monte-Carlo Off-Policy Evaluation

Motivation:

• In the above, we discussed the case where we are able to obtain many realizations

of Gt under the policy π that we want to evaluate.

• However, in many costly or high-risk situations, we are unable to obtain rollouts of

Gt under the policy that we wish to evaluate.

• In this section, we describe Monte-Carlo off-policy policy evaluation, a method for

using data from one policy to evaluate a different policy.

3 / 6

Monte-Carlo Off-Policy Evaluation
Importance Sampling: that estimates the expected value of a function f (x) when x is

drawn from the distribution q using only the data f (x1), . . . , f (xn), where xi are drawn

from a different distribution p. In summary, given q(xi),p(xi), f (xi) for 1≤ xi ≤ n, we

would like an estimate for Ex∼q[f (x)]. We can do this via the approximation:

Ex∼q[f (x)] =

∫
x
q(x)f (x)dx

=

∫
x
p(x)

[
q(x)

p(x)
f (x)

]
dx

= Ex∼p

[
q(x)

p(x)
f (x)

]
≈ 1

n

n∑
i=1

[
q(xi)

p(xi)
f (xi)

]
.

The last equation gives us the importance sampling estimate of f under distribution q

using samples of f under distribution p. Note that the first step only holds if

q(x)f (x)> 0 implies p(x)> 0 for all x .

3 / 6

Monte-Carlo Off-Policy Evaluation

Importance sampling for off-policy policy evaluation: We apply importance

sampling estimates to reinforcement learning. In this instance, we want to approximate

the value of state s under policy π1, given by V π1(s) = E[Gt | st = s], using n histories

h1, . . . ,hn generated under policy π2. The importance sampling estimate result provides:

V π1(s)≈ 1
n

n∑
j=1

P(hj | π1,s)

P(hj | π2,s)
G (hj) ,

where G (hj) =
∑Lj−1

t=1 γt−1rj ,t is the total discounted sum of rewards for history hj .

3 / 6

Monte-Carlo Off-Policy Evaluation

Now, for a general policy π, we have that the probability of experiencing history hj

under policy π is

P(hj | π,s = sj ,1) =

Lj−1∏
t=1

P(aj ,t | sj ,t)P(rj ,t | sj ,t ,aj ,t)P(sj ,t+1 | sj ,t ,aj ,t)

where Lj is the length of the j-th episode. In each transition, the components are 1)

P(aj ,t | sj ,t) - probability we take action aj ,t at state sj ,t ; 2) P(rj ,t | sj ,t ,aj ,t) - probability

we experience reward rj ,t after taking action aj ,t in state sj ,t ; 3) P(sj ,t+1 | sj ,t ,aj ,t) -

probability we transition to state sj ,t+1 after taking action aj ,t in state sj ,t .

3 / 6

Monte-Carlo Off-Policy Evaluation

Combining our importance sampling estimate for V π1(s) with our decomposition of the

history probabilities, P(hj | π,s = sj ,1), we get that

V π1(s)≈ 1
n

n∑
j=1

P(hj | π1,s)

P(hj | π2,s)
G (hj)

=
1
n

n∑
j=1

∏Lj−1
t=1 π1(aj ,t | sj ,t)P(rj ,t | sj ,t ,aj ,t)P(sj ,t+1 | sj ,t ,aj ,t)∏Lj−1
t=1 π2(aj ,t | sj ,t)P(rj ,t | sj ,t ,aj ,t)P(sj ,t+1 | sj ,t ,aj ,t)

G (hj)

=
1
n

n∑
j=1

G (hj)

Lj−1∏
t=1

π1(aj ,t | sj ,t)
π2(aj ,t | sj ,t)

.

3 / 6

Temporal Difference Learning

Motivation. A recap of the policy evaluation methods:

• Dynamic programming leverages bootstrapping to help us get value estimates

with only one backup.

• Monte Carlo samples many histories for many trajectories which frees us from

using a model.

• Temporal difference learning combines bootstrapping with sampling to give us a

new model-free policy evaluation algorithm.

4 / 6

Temporal Difference Learning
To see how to combine sampling with bootstrapping, we go back to our incremental

Monte-Carlo update

V π(st)← V π(st)+α(Gt −V π(st)) .

We replace Gt with a Bellman backup like rt + γV π(st+1), where rt is a sample of the

reward at time step t and V π(st+1) is our current estimate of the value at the next

state. It gives us the temporal difference (TD) learning update

V π(st)← V π(st)+α(rt + γV π(st+1)−V π(st)) .

4 / 6

Temporal Difference Learning

The TD error is given by:

δt = rt + γV π(st+1)−V π(st)

The sampled reward combined with the bootstrap estimate of the next state value, i.e.,

the TD target is given by:

rt + γV π(st+1) ,

We can see that using this method, we update our value for V π(st) directly after

witnessing the transition (st ,at , rt ,st+1).

4 / 6

Temporal Difference Learning

4 / 6

Temporal Difference Learning

Here, we see via the blue line that we sample

one transition starting at s, then we estimate

the value of the next state via our current

estimate of the next state to construct a full

Bellman backup estimate.

4 / 6

Temporal Difference Learning

Remark. There is actually an entire spectrum of ways we can blend Monte Carlo and

dynamic programming using a method called TD(λ).

• When λ = 0, we get the TD learning, hence giving us the alias TD(0).

• When λ = 1, we recover the Monte-Carlo policy evaluation.

• When 0 < λ < 1, we get a blend of these two methods.

4 / 6

Temporal Difference Learning

Remark. There is actually an entire spectrum of ways we can blend Monte Carlo and

dynamic programming using a method called TD(λ).

For a more thorough treatment of TD(λ), we refer the interested reader to Sections 7.1

and 12.1-12.5 of Reinforcement learning: An introduction.

4 / 6

Batch Monte-Carlo sampling and temporal difference

We consider the batch cases of Monte Carlo and TD(0).

• In the batch case, we are given a batch, or set of histories h1, . . . ,hn, which we

then feed through Monte Carlo or TD(0) many times.

• The only difference from our formulations before is that we only update the value

function after each time we process the entire batch.

5 / 6

Batch Monte-Carlo sampling and temporal difference

Motivation Example. Suppose γ = 1 and we have eight histories generated by policy

π, take action a1 in all states:

h1 = (A,a1,+0,B,a1,+0, terminal)

hj = (B,a1,+1, terminal) for j = 2, . . . ,7

h8 = (B,a1,+0, terminal).

5 / 6

Batch Monte-Carlo sampling and temporal difference

In this example, using

either batch Monte

Carlo or TD(0) with

α = 1
N(s) , we see that

V (B) = 0.75.

5 / 6

Batch Monte-Carlo sampling and temporal difference

However, if we use

• Monte Carlo, we get that V (A) = 0

since only the first episode visits state

A and has return 0.

• TD(0) giving us V (A) = 0.75 because

we perform the update

V (A)← r1,1+ γV (B). The estimate

given by TD(0) makes more sense.

5 / 6

Question and Answering (Q&A)

6 / 6

