Lecture 12 - Model-Free Policy Evaluation

Guiliang Liu
The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

Monte-Carlo Policy Evaluation

An example of the Monte-Carlo method: Suppose we want to estimate how long the

commute from your house to the campus will take today.

® We have access to a commute simulator that models our uncertainty of how bad
the traffic will be, the weather, construction delays, and other variables, as well as

how these variables interact with each other.

® \We estimate the expected commute time by simulating our commute many times

on the simulator and then take an average over the simulated commute times.

This is called a Monte-Carlo estimate of our commute time. Monte-Carlo method only

works in episodic environments F B P LK ECGRID

2 g <N The Chinese University of Hong Kong, Shenzhen

2/6

Monte-Carlo Policy Evaluation

In the context of reinforcement learning, the quantity we want to estimate is V*(s),
which is the average of returns G; (which equals R; without n-step truncate or
eligibility traces) under policy 7 starting at state s. We can thus get a Monte-Carlo
estimate of V”(s) through three steps:

1. Execute a rollout of policy 7 until termination many times;

2. Record the returns G; that we observe when starting at state s;

3. Take an average of the values we get for G; to estimate V7 (s).

B #2vx k%09
Se

e The Chinese University of Hong Kong, Shenzhen

)

3

2/6

N

[7]

Monte-Carlo Policy Evaluation

States

— = Expectation
= Terminal state

Actions

The backup diagram for Monte-Carlo policy
evaluation. The new blue line indicates that
we sample an entire episode until termina-

tion starting at state s.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

2/6

Monte-Carlo Policy Evaluation

First-visit Monte-Carlo: Take an average over just the first time we visit a state in each

rollout.

Algorithm 1: First-visit Monte-Carlo policy evaluation
Input: hy,..., h;
For all states s, N(s) « 0, S(s) < 0, V(s) «+ 0
for each episode h; do
fort=1,...,L; do
if 55, # s;4 for u <t then
\; N(Sj’t) — N(Sj’g) +1

S(Sj’t) < S(Sj,g) =+ G"g
V™ (s54) + S(s5¢) /N (s4¢)

return V™

7 AR T XK F R I
The Chinese University of Hong Kong, Shenzhen

2/6

Monte-Carlo Policy Evaluation

Every-visit Monte-Carlo: Take an average over every time we visit the state in each
rollout. If we are in a truly Markovian-domain, every-visit Monte Carlo will be more data

efficient because we update our average return for a state every time we visit the state.

Algorithm 2: Every-visit Monte-Carlo policy evaluation
Input: hy,..., h;
For all states s, N(s) 0, S(s) <0, V(s) «+ 0
for each episode h; do
fort=1,...,L; do
L N(Sj}t) {— N(Sj’t) + 1

S(sje) < S(sje) + Gy
V7 (s51) + S(s54)/N(sj)

return V7

¥/ N I | J\/\'—'r\q\»”)
The Chinese University of Hong Kong, Shenzhen

2/6

Monte-Carlo Policy Evaluation

In these Algorithms, we can remove vector S and replace the update for V*(s; ;) with

VE(sjt) < V(sje) + (Gjt — V7(sjt))-

1
N(sj.t)
This is because the new average is the average of N(sj ;) —1 of the old values V*(s;)

and the new return G;j;, giving us

Vi(sie) (N(sje) =)+ Gje z s: o
ER ~V G

(Gt = V(sjt))

Replacing 1/N(s;j ;) with « in this new update gives us the mags,

general incremental
HHE P K ECRYD

Monte-Carlo policy evaluation. o5 The Chinese University of Hong Kong, Shenzhen

2/6

Monte-Carlo Policy Evaluation

Incremental First-visit Monte-Carlo policy evaluation:

Algorithm 3: Incremental first-visit Monte-Carlo policy evaluation

Input: o, hq,...,h;j
For all states s, N(s) < 0, V(s) < 0
for each episode h; do
fort=1,...,terminal do
if st # sju for u <t then
L N(Sj}t) — N(Sj’g) +1
V7™ (sjt) < V™(s) + a(Gjt — V7 (s))

return V7

#oF LK ERYD

Chinese University of Hong Kong, Shenzhen

2/6

Monte-Carlo Policy Evaluation

Incremental Every-visit Monte-Carlo policy evaluation:

Algorithm 4: Incremental every-visit Monte-Carlo policy evaluation
Input: o, hy,...,h;j
For all states s, N(s) + 0, V(s) + 0
for each episode h; do
fort=1,...,terminal do
N(sjt) < N(sje) +1
L VW(SJ'Y!) — Vﬂ-(s) + Q(Gj:g - V"(s))

return V™

Setting ov = 1/N(s;) recovers the original Monte-Carlo policy evaluation algorithms

given in the above Algorithms, while setting o > ﬁ gives a higher weight to newer
data, which can help learning in non-stationary domains. A& P XX F CRID

The Chinese University of Hong Kong, Shenzhen

2/6

Monte-Carlo Off-Policy Evaluation

Motivation:

® In the above, we discussed the case where we are able to obtain many realizations

of G; under the policy 7 that we want to evaluate.

® However, in many costly or high-risk situations, we are unable to obtain rollouts of

G; under the policy that we wish to evaluate.

® |n this section, we describe Monte-Carlo off-policy policy evaluation, a method for

using data from one policy to evaluate a different policy.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

3/6

Monte-Carlo Off-Policy Evaluation

Importance Sampling: that estimates the expected value of a function 7(x) when x is
drawn from the distribution g using only the data f(x1),...,f(x,), where x; are drawn
from a different distribution p. In summary, given q(x;), p(x;),f(x;) for 1 < x; < n, we

would like an estimate for E,4[f(x)]. We can do this via the approximation:

Eyqlf(x)] = / 4(x)f (x)dx

X

B #2vx k%09
DX The Chinese University of Hong Kong, Shenzhen

By

3/6

Monte-Carlo Off-Policy Evaluation

Importance sampling for off-policy policy evaluation: We apply importance
sampling estimates to reinforcement learning. In this instance, we want to approximate
the value of state s under policy m;, given by V™ (s) = E[G; | s; = s], using n histories

h1,...,h, generated under policy mp. The importance sampling estimate result provides:

1 P(hj| m,s)
Va(s)~ =Y L 272 G(h;
(5) H;P(hj|7f2,5) (J)a

where G(hj) = Zt 1 yt 1r; + is the total discounted sum of rewards for history hj.
F &P XK FCRID

<N The Chinese University of Hong Kong, Shenzhen

3/6

Monte-Carlo Off-Policy Evaluation

Now, for a general policy 7, we have that the probability of experiencing history h;

under policy 7 is
Lj—1

P(hi | ms=si1) = [P(aje | 5.0)P(re | 5j.6:31.)P(Se41 | St 3yt

t=1
where L; is the length of the j-th episode. In each transition, the components are 1)
IP(aj¢ | sj,¢) - probability we take action a;; at state s;+; 2) P(rj ¢ | 5j¢,aj,¢) - probability
we experience reward r; + after taking action aj ¢ in state sj+; 3) P(Sj r41 | Sj¢.a).¢) -
probability we transition to state s; ;1 after taking action a;; in state s; ;.
B #»vxxeorn

et The Chinese University of Hong Kong, Shenzhen

3

3/6

Monte-Carlo Off-Policy Evaluation

Combining our importance sampling estimate for V™ (s) with our decomposition of the
history probabilities, P(h; | m,s = sj 1), we get that

v

(hj
Vi(s ZP 9) G(hj

h |7'L'2,

7211 ;7 (3 | 5.00P (e | e 2.6)P(Sen | Sies 3jce) G(hy)
J
=g | 752(31 e 155,)P(rje | Sjie, 3j,6)P(Sj,041 | S 3 t)
-1

n
15"t I 2212
n
j=1

o 2 ajt|51t)

FEF XK FEEID

38 . The Chinese University of Hong Kong, Shenzhen

3/6

Temporal Difference Learning

Motivation. A recap of the policy evaluation methods:
® Dynamic programming leverages bootstrapping to help us get value estimates
with only one backup.
e Monte Carlo samples many histories for many trajectories which frees us from
using a model.
e Temporal difference learning combines bootstrapping with sampling to give us a

new model-free policy evaluation algorithm.

FEF XK FEEID

o)
Q2
&.}:%,‘.% The Chinese University of Hong Kong, Shenzhen

3

4/6

Temporal Difference Learning

To see how to combine sampling with bootstrapping, we go back to our incremental

Monte-Carlo update
V”(St) < V”(St) + Ot(Gt — V”(St)) .

We replace G; with a Bellman backup like r +yV7(st+1), where r; is a sample of the
reward at time step t and V™(s;41) is our current estimate of the value at the next

state. It gives us the temporal difference (TD) learning update

Vﬂ(St) — V”(St) +Oc(rt+7V”(st+1) — V”(St)) .
B #2vx k%09

L. The Chinese University of Hong Kong, Shenzhen

Y
cIrren

4/6

Temporal Difference Learning

The TD error is given by:
8t =TIt + YV”(SH_l) — V”(St)

The sampled reward combined with the bootstrap estimate of the next state value, i.e.,

the TD target is given by:
re+ ’)/Vn(St+1))

We can see that using this method, we update our value for V7 (s;) directly after

witnessing the transition (st, a, re, St41)-

G m-ﬁé!,'-

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

4/6

Temporal Difference Learning

Algorithm 5: TD Learning to evaluate policy 7

Input: step size o, number of trajectories n
For all states s, V™(s) « 0
while n > 0 do
Begin episode E at state s
while episode E has not terminated do
a < action at state s under policy 7
Take action a in E and observe reward r, next state s’
V™ (s) « V™(s) + a(r + yV™(s') — V7 (s))
s« s
n<n-—1
return V™

FEF XK FEEID

o The Chinese University of Hong Kong, Shenzhen

4/6

Temporal Difference Learning

Actions Here, we see via the blue line that we sample

States one transition starting at s, then we estimate

g\ the value of the next state via our current
' T estimate of the next state to construct a full

) Bellman backup estimate.
‘.~ = Expectation

= Terminal state

FEF XK FEEID

o The Chinese University of Hong Kong, Shenzhen

4/6

Temporal Difference Learning

Remark. There is actually an entire spectrum of ways we can blend Monte Carlo and

dynamic programming using a method called TD(A).

Grisn = Rip1+7Ripa+ -+ ' Rign +7"0(St4n Wign—1), 0<t <T—n,
T—t—1
G;\ = (1 - A) Z)‘n_th:tJr-n, + /\T_f_th.
n=1
® When A =0, we get the TD learning, hence giving us the alias TD(0).

® When A =1, we recover the Monte-Carlo policy evaluation.

® When 0 <A <1, we get a blend of these two methods. .,
K] &9 xx2eRY)

B The Chinese University of Hong Kong, Shenzhen

4/6

Temporal Difference Learning

Remark. There is actually an entire spectrum of ways we can blend Monte Carlo and

dynamic programming using a method called TD(4).

Grpgn = Rip1 +7Rpqpo 4+ +7n71Rt+n +"0(St Wign—1), 0<t <T —n,
T—t—1

G? = (17/\) Z)‘n_th:t+n + /\T_t_th.

n=1

For a more thorough treatment of TD(A), we refer the interested reader to Sections 7.1

and 12.1-12.5 of Reinforcement learning: An introduction.)
B) ==+ x5k

B The Chinese University of Hong Kong, Shenzhen

4/6

Batch Monte-Carlo sampling and temporal difference

We consider the batch cases of Monte Carlo and TD(0).
® |n the batch case, we are given a batch, or set of histories hq,..., h,, which we
then feed through Monte Carlo or TD(0) many times.
® The only difference from our formulations before is that we only update the value

function after each time we process the entire batch.

%7 -
K] &9 xx2eRY)
PEXL The Chinese University of Hong Kong, Shenzhen

L
ety

5/6

Batch Monte-Carlo sampling and temporal difference

Motivation Example. Suppose ¥ =1 and we have eight histories generated by policy

7, take action aj in all states:

hi = (A, a1,+0, B, a1,+0, terminal)
hj = (B, a1,+1, terminal) for j =2,...,7
hg = (B, a1,+0, terminal).

%7 -
K] &9 xx2eRY)
PEXL The Chinese University of Hong Kong, Shenzhen

L
ety

5/6

Batch Monte-Carlo sampling and temporal difference

r=20
() 100%

In this example, using
either batch Monte

Carlo or TD(0) with

*= 75

V(B) =0.75.

, we see that

A& T XK ZCRID
The Chinese University of Hong Kong, Shenzhen

5/6

Batch Monte-Carlo sampling and temporal difference

However, if we use
¢ Monte Carlo, we get that V(A) =0
since only the first episode visits state
A and has return 0.
e TD(0) giving us V(A) =0.75 because
we perform the update
V(A) <~ ri.1+7YV(B). The estimate

given by TD(0) makes more sense.

FEF XK FEEID

-, The Chinese University of Hong Kong, Shenzhen

5/6

Question and Answering (Q&A)

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

6/6

