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Model-based v.s. Model-free Algorithms

The model indicates the transition function and the reward function. This estimation

could be in form of point estimation or distribution estimation like posterior sampling.

® Model-based Algorithm: maintains an estimate of the model and uses the model

when interacting with the environment.
e Model-free Algorithm: does not estimate the world model.

When we do not have a reasonable estimation of the model (under large state and
action spaces and continuous settings), an error will be induced by a wrongly estimated
model as the model bias (maybe accumulate during learning).
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Q-Learning

We start with the value iteration algorithm and discuss how the model could be lifted.

Algorithm 1: Value iteration
Input: ¢
For all states s € S, V'(s) + 0, V(s) + oo
while ||V — V'||» > e do

VeV
For all states s € S, V'(s) = max [R(s,a) +7 > yes P(s' | 5,a)V(s)]
a

V*«Viorallse S
* eargmax[ (s,0) + ¥ X yes P(s' | s,a)V*(s)] ,VseS
€A

return V* (s), 7*(s) for all s € S
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Q-Learning
® Theterms > .5 P7r(s'[s,a)V(s') and 3" .5 Pr(s'|s,a)V*(s’) could remove the
dependency on Py by representing the action values.
® V'(s) = maxsealR(s,a) + 7> ges Pr(s' | 5,a)V(s')] can be updated to
Q'(s,a) = maxyca[R(s,a) + 7> ges Pr(s' | 5,a)[Q(s',a")]] (Free R and Pr).

Algorithm 2: Q-learning
Input: €, o
For all (s,a) € 8§ x A, Q'(s,a) + 0, Q(s,a) + oo
while ||Q — Q|| > € do
Q+Q

Sample a trajectory 7 from the policy 7(a | ) = arg max Q(s,a)
A

a
For all state-action-reward-state tuple (s, a,r,s’) € 7,
Q'(s,a) « (1~ a)Q(s,a) + o max[r +7Q(s',a')]
a’e

Q" «+ Q for all (s,a) eSx.A GRID
T* ¢ arg max Q(s,a) f Hong Kong, Shenzhen

acA
return Q*(s,a), 7*(s) for all s,a
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Q-Learning

® |ntroducing the step size so that the update only takes at o portion of the action

value while the 1 — o portion of the action value remains the same.

Algorithm 2: Q-learning
Input: €, o
For all (s,a) € S x A, Q'(s,a) + 0, Q(s,a) + oo
while ||Q — Q'[| > e do
Qe Q
Sample a trajectory 7 from the policy n(a | s) = arg max Q(s,a)
acA

For all state-action-reward-state tuple (s,a,r,s’) € 7,
Q'(s,a) « (1 - a)Q(s,a) + max [r +9Q(s', a')]
a

Q + Qforall (s,a) eSx A
T* ¢ arg max Q(s,a)
acA

return Q*(s,a), 7*(s) for all s,a GRID
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Q Learning in Grid World.

Q-Learning

Q-Function
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Exploration and &-greedy Q-learning

In Q-learning, the trajectory sampled is subject to the current policy and thereof the
current value estimation. However,
® |t is possible that the algorithm is stuck at a suboptimal action value estimate and
does not update itself.
® |t is possible that some states are never explored with some initialization of the

policy and value functions.

A simple way of involving exploration is to force the algorithm to select a random

action with probability €. This € could delay over the iterations, as is in the e-greedy
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Exploration and &-greedy Q-learning

Algorithm 3: Q-learning with e-greedy exploration

Input: ¢, a

For all (s,a) € S x A, @' (s,a) « 0, Q(s,a) + oo
while |Q — Q'] > € do

Qe

Sample a trajectory 7 from the policy

argmax Q(s,a) with probability 1 —e
m(a|s) = acA
random action with probability
For all state-action-reward-state tuple (s,a,r,s’) € 7,
Q'(s,a) + (1 —a)Q(s,a) + max [r+Q(s',ad')]
a'e

Q_’W—Qforall(s,a)eSxA
T + argmax Q(s,a)
acA
return Q*(s,a), 7*(s) for all s,a £y
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Q-learning with UCB

In spite of simplicity, e-greedy Q-learning does not have a rigorous regret guarantee.

® \We present another variant of Q-learning with UCB exploration. This algorithm is

the first Q-learning variant that has a rigorous regret guarantee of v K.

® We again use Qj(s,a) as the time-dependent action-value function, which is

necessary when the horizon of each episode is constant.
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Q-learning with UCB

Algorithm 4: Q-learning with UCB exploration

Input: «o: adaptive step size; 0: confidence level

Initialize Qu(s,a) < 0, Ny(s,a) < 0 for all h € [H], k<0
while K < K — 1 do

Start an episode with s

forh<H-—1,...,0do

Take action af = argmax, Qx(sF,a) and observe sf "
Ni(sF, aF) < Nu(sf,af) +1

Update the action value as

H3log(hnmHK/§
Qulsh, )  (1-0)Qn(sh ab) bor [ra(sh o) + Vg (skyy) + oy o i08mEK]0)
Nh(shvah)

Update the state value as

Vi(sh) = min {math(sﬁ, a), H}
a

L ke k1 R )
[ = (R I
Qf Qh X 7of Hong Kong, Shenzhen
;< arg max, Qn(s,a)
return Q}, 7 for all h € [H]
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Q-learning with UCB

Theorem
By choosing o0 = % with the visitation count N = Nj(sK,ak), there exists an
absolute constant ¢ such that with probability at least 1 — 0 the regret of Q-learning

with UCB exploration is at most O(y/nmH5K log(nmHK/§)).

The proof relies on the cast of the variables into a filtration and therefore the use of the
Azuma-Hoeffding inequality (introduced in LN3). For those students that are interested

in the proof we could host you with a presentation of it.
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Question and Answering (Q&A)
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