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Recap: Discrete-time Markov Decision Process (MDP)

Discrete-time Markov decision process (MDP), denoted as the tuple (S,A,T ,R,ρ0,γ).

• S the state space;

• A the action space. A can depend on the state s for s ∈ S;

• T : S ×A→∆(S) the environment transition probability function;

• R : S ×A→∆(R) the reward function;

• ρ0 ∈∆(S) the initial state distribution;

• γ ∈ [0,1] the discount factor.

Note that ∆(X ) denotes the set of all distributions over set X .
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Recap: Discrete-time Markov Decision Process (MDP)

A stationary MDP follows for t = 0,1, . . . as below, starting with s0 ∼ ρ0.

• The agent observes the current state st ;

• The agent chooses an action at ∼ π(at | st);

• The agent receives the reward rt ∼R(st ,at);

• The environment transitions to a subsequent state according to the Markovian

dynamics st+1 ∼ T (st ,at).

This process generates the sequence s0,a0, r0,s1, . . . indefinitely. The sequence up to

time t is defined as the trajectory indexed by t, as τt = (s0,a0, r0,s1, . . . , rt).
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Recap: Discrete-time Markov Decision Process (MDP)

The goal is to optimize the expected discounted cumulative return

Est ,at ,rt ,t≥0 [R0] = Est ,at ,rt ,t≥0
[ ∞∑
t=0

γ
trt

]
over the agent’s policy π.
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Question and Answering (Q&A)
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Discrete Markov chains

A Markov chain, also known as a homogeneous Markov chain, refers to an infinite

process x1, . . . ,xT , . . . where

P(xt+1 | xt , . . . ,x1) = P(xt+1 | xt) = PM(x ′ | x)

holds almost surely for some probability measure PM.
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Discrete Markov chains

Some key definitions:

• The state space S is countable, e.g., state space [n] = [1,2, . . . ,n] is finite.

• The transition probability matrix is P ∈ Rn×n where the element Pii ′ on the i-th

and i ′-th column equals P(x ′ = i ′ | x = i). It is Pπ in MDPs.

• The state value function is V (s), and the value vector is V ∈ Rn.

• The reward function is R(s), and the reward vector is r ∈ Rn.

• The initial state distribution ρ0 ∈ Rn.

The occupancy vector ρt , where the i-th element of ρt denotes P(st = i | s0 ∼ ρ0), is

then ρ0P
t .
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Discrete Markov chains

When R(s) is deterministic, r is a deterministic vector. The Bellman equation then

writes V = r + γPV . Since P is a Markov matrix, I − γP is invertible when γ < 1 and

the value function can be solved by

V = (I − γP)−1r .
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Discrete Markov chains

Reducible states. For two states i , i ′ ∈ [n], if there exists a T such that

P(i ′ ∈ {s1, . . . ,sT} | s0 = i)> 0, we say that i ′ is accessible from i . If i is accessible from

i ′ and i ′ is accessible from i , we say that i and i ′ communicate with each other. If for

any i , i ′ ∈ [n], i and i ′ communicate with each other, the Markov chain is irreducible.

• For a Markov chain that is reducible, it is intuitive to partition the chain into

irreducible components (likewise, to consider each connected component in a

graph). It is therefore sensible to assume that the Markov chain is irreducible.
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Discrete Markov chains

Periodicity. For i ∈ [n], the period of state i is the largest integer d satisfying

P(st ̸= i | s0 = i , t ̸= 0 mod d), or infinity if such a largest integer does not exist.

When d = 1, state i is aperiodic, and otherwise, state i is periodic with period d .

• In an irreducible Markov chain, all states have the same period. An irreducible

Markov chain is aperiodic if all states are aperiodic.

• Mathematically, a chain is aperiodic if and only if Pt contains only positive

elements for some positive integer t.
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Discrete Markov chains

Ergodicity. A Markov chain that is irreducible and aperiodic must be ergodic. We

commonly assume a chain to be ergodic without loss of generality.

• For the rest of the course, unless otherwise specified, we assume the Markov chains

to be ergodic. In MDPs however, in general, there exist policies such that the

chain induced by the policies are not ergodic.
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Policy Evaluation With a Known Model

Model-based Policy Evaluation:

• When at least one of P and r is known, the problem is policy evaluation with a

known model.

• When both P and r are unknown we can make an effort to estimate a P ′ such that

P and P ′ are close in some measure of discrepancy (or r ′, respectively).

If otherwise and we only utilize the access to the environment transition, the method is

categorized as model-free policy evaluation.
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Policy Evaluation With a Known Model

Policy Evaluation (PE): compute the value function given a fixed policy. When at

least one of P and r is known, the problem is policy evaluation with a known model.

• Under discrete state and action spaces,

• When both P and r are known.

• When γ < 1

The solution is: V = (I − γP)−1r .
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Model-based Policy Evaluation

When both P and r are unknown and we estimate a P ′ such that P and P ′ are close

(or r ′, respectively), the problem is model-based policy evaluation.

Lemma
Assume that 0 ≤ r ≤ 1. Let ε ∈ (0, 1

1−γ
). There is an absolute constant c such that

once one has collected at least:

N ≥ γ

(1− γ)4
n2m log(cnm/δ )

ε2

samples for each (s,a) ∈ S ×A pair, then we could estimate P̂ and Q̂π such that with

probability at least 1−δ , ∥P(· | s,a)− P̂(· | s,a)∥1 ≤ (1− γ)2ε . For every (s,a) pair,

and ∥Qπ − Q̂π∥∞ ≤ ε for every policy π.
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The Bellman Optimality Equation
Some assumptions:

• Let the reward function be deterministic.

• Let the reward is bounded by [0,1] in discrete MDPs.

• Let the reward function R(s,a) defined by a matrix r ∈ Rn×m, where the element

at the i-th row and the j-th column denotes R(i , j).

• Let Pj be the transition matrix for the policy that chooses action j at every state.

Recall that in discrete MDPs a value function V is optimal if and only if the Bellman

optimality equation:

V =max
j

[rj + γPjV ]

is satisfied with P ∈ {P1, . . . ,Pm}.
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The Bellman Optimality Equation

By exhausting the action set under the max operator and numbering the actions from 1

to m, the Bellman optimality equation is formulated into the below linear program:

minimize
V

eTV

subject to (I − γPj)V − rj ≥ 0 , j = 1, . . . ,m ,

where e is the all-one vector and eTV is a dummy objective. Linear programming is in

P and can be solved in poly(n,m). We consider a problem solved if we can cast it to a

linear program. Though, this requires Pi to be known.
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The Bellman Optimality Equation

The dual of the above linear program is

maximize
λ1,...,λm

∑
j

λ
T
j rj

subject to
∑
j

(I − γPT
j )λj = e ,

λj ≥ 0, j = 1, . . . ,m .

The dual formulation optimizes λ1, . . . ,λm, which could represent policy information

(More specifically, occupancy measure: P (st = s,at = a|µ0,π,T ) ).
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The Bellman Optimality Equation

Lemma
There exists an optimal dual solution λ ∗

j , j = 1, . . . ,m, an optimal deterministic policy

π∗(·), and the corresponding transition matrix P∗, such that

∑
j

λ
∗
j = (I − γP∗T )−1e,

and the i-th entry of λ ∗
j equals to the i-th entry of

∑
j λ ∗

j if π∗(i) = j , and zero

otherwise.
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The Bellman Optimality Equation

Lemma
The ℓ1-norm ∥

∑
j λ ∗

j ∥1 of the dual optimum is exactly n/(1− γ).
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The Bellman Optimality Equation

Lemma
The stochastic policy π(j | i) = λ

′(i)
j /

∑
j ′ λ

′(i)
j ′ achieves a value V ′ such that

eTV ′ =
∑

j λ ′T
j rj .
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