#### Lecture 7 - Thompson sampling

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning Course Page: [Click]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つへぐ

#### DDA 4230 Resources

Join our Wechat discussion group.



Check our course page.



Course Page Link (all the course relevant materials will be posted here):

https://guiliang.github.io/courses/cuhk-dda-4230/dda\_4230.html



### Recap: Bayesian statistics and Bernoulli-Beta conjugate

Recall that the reward r(i) of arm *i* follows some distribution. Assume that the reward distributions of arms belong to the same family with respective parameters, which writes

 $r(i) \sim p(x \mid \theta_i).$ 

Recall that when estimating  $\theta$ , the posterior is

$$p(\theta \mid x) = \frac{p(x \mid \theta)p(\theta)}{\int_{\theta'} p(x \mid \theta')p(\theta')d\theta'}.$$

Conjugate distributions: The posterior distributions  $p(\theta \mid x)$  are in the same probability distribution family as the prior probability distribution  $p(\theta)$ . 香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

#### Recap: Bayesian statistics and Bernoulli-Beta conjugate

The Bernoulli-Beta is important for Thompson sampling for Bernoulli bandits. Recall that the Beta distribution  $Beta(\alpha,\beta)$  with parameter  $\theta = \{\alpha,\beta\}$  follows the probability density function of

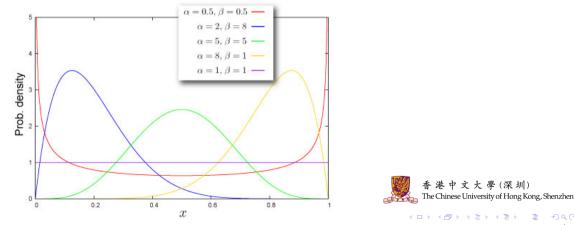
$$p(x) = rac{\Gamma(lpha + eta)}{\Gamma(lpha)\Gamma(eta)} x^{lpha - 1} (1 - x)^{eta - 1},$$

where  $\Gamma(z) = \int_0^\infty x^{z-1} \exp(-x) dx$ ,  $z \in \mathbb{C}$  is the Gamma function.



3/6

Recap: Bayesian statistics and Bernoulli-Beta conjugate In Bayesian inference, the beta distribution is the conjugate prior probability distribution for the Bernoulli distribution.



Recap: Bayesian statistics and Bernoulli-Beta conjugate When  $p(\theta) \sim \text{Beta}(\alpha_0, \beta_0)$  and we observe  $x_1, \dots, x_{\alpha'+\beta'} \sim x$  i.i.d. with  $\alpha'$  ones and  $\beta'$ zeros (observe a new data  $x \sim \text{Ber}(\theta)$ ), then the posterior should follow:

$$p(\theta \mid x_{1}, \dots, x_{\alpha'+\beta'}) = \frac{p(x_{1}, \dots, x_{\alpha'+\beta'} \mid \theta)p(\theta)}{\int_{\theta'} p(x_{1}, \dots, x_{\alpha'+\beta'} \mid \theta')p(\theta')d\theta'}$$

$$= \frac{\binom{\alpha'+\beta'}{\alpha'}\theta^{\alpha'}(1-\theta)^{\beta'}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha_{0}-1}(1-\theta)^{\beta_{0}-1}}{\int_{\theta'} p(x_{1}, \dots, x_{\alpha'+\beta'} \mid \theta')p(\theta')d\theta'}$$

$$= \frac{\binom{\alpha'+\beta'}{\alpha'}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}}{\int_{\theta'} p(x_{1}, \dots, x_{\alpha'+\beta'} \mid \theta')p(\theta')d\theta'}\theta^{\alpha_{0}+\alpha'-1}(1-\theta)^{\beta_{0}+\alpha'-1}}$$

$$\sim \operatorname{Beta}(\alpha_{0}+\alpha', \beta_{0}+\beta').$$

$$\overset{\text{F} \stackrel{\text{\tiny $\mathbb{R}$} \ensuremath{\P \times \mathbb{K} \stackrel{\text{\tiny $\mathbb{R}$}}{\longrightarrow}}(\ensuremath{\mathbb{K} \stackrel{\text{\tiny $\mathbb{N}$}}{\longrightarrow}}(\ensuremath{\mathbb{K} \stackrel{\text{\tiny $\mathbb{N}$}}{\longrightarrow}})$$

## Thompson sampling algorithms

- Before the game starts, the learner sets a prior over possible bandit environments.
- In each round, the learner samples an environment from the posterior and acts according to the optimal action in that environment.
- The exploration in Thompson sampling comes from the randomization, i.e., whether the posterior concentrates or not.

 Algorithm 1: Thompson sampling (Bernoulli bandits)

 Input: Prior  $\alpha_0$ ,  $\beta_0$  

 Output:  $a_t, t \in [T]$  

 Initialize  $\alpha_i = \alpha_0$ ,  $\beta_i = \beta_0$ , for  $i \in [m]$  

 while  $t \leq T - 1$  do

 Sample  $\theta_i(t) \sim \text{Beta}(\alpha_i, \beta_i)$  independently for  $i \in [m]$ 
 $a_t = \arg \max_{i \in [m]} \theta_i(t)$  with arbitrary tiebreaker

 If  $r_t = 1$  then  $\alpha_{a_t} += 1$ ; If  $r_t = 0$  then  $\beta_{a_t} += 1$ ;

# Thompson sampling algorithms

When the family of the underlying reward distribution is unknown, a Gaussian-Gaussian conjugate (the non-informative prior) can be useful.

Algorithm 2: Thompson sampling **Input:** Prior  $\theta_0$ **Output:**  $a_t, t \in [T]$ Initialize  $\theta_i = \theta_0$ , for  $i \in [m]$ while t < T - 1 do Sample independently for  $i \in [m]$ ,  $\theta_i(t) \sim p(\theta \mid \{r_{t'}\}_{1 \leq a_{t'} \leq t-1\}})$  $a_t = \arg \max_{i \in [m]} \theta_i(t)$  with arbitrary tiebreaker Update the posterior probability distribution of  $\theta_{a_t}(t+1)$  by  $p(\theta_{a_t}(t+1) \mid \{r_{t'}\}_{1\{a_{t'}=i\}}) = \frac{p(\{r_{t'}\}_{1\{a_{t'}=i\}} \mid \theta)p(\theta)}{\int_{a'} p(\{r_{t'}\}_{1\{a_{t'}=i\}} \mid \theta')p(\theta')d\theta'}$ (深圳) of Hong Kong, Shenzhen

## The Regret of Thompson sampling Algorithms

#### Theorem

Assume the rewards of arms are  $\mu_i$ -Bernoulli. The regret under TS (Bernoulli bandits) is at most:

$$\overline{R}_T \leq \sum_{i:\Delta_i>0} rac{\mu_1-\mu_i}{d_{\mathcal{KL}}(\mu_1\|\mu_i)} \log T + o(\log T),$$

where the Kullback-Leibler divergence:

$$d_{\mathcal{KL}}(\mu_1 \| \mu_i) = \mu_1 \log(\frac{\mu_1}{\mu_i}) + (1 - \mu_1) \log(\frac{1 - \mu_1}{1 - \mu_i}).$$

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

# Question and Answering (Q&A)





< (교) < ((u) < (u) < ((u) < ((u) < (u) < ((u) < (((u) < ((u) < (((u) < (((u) < ((u) < ((u) < ((u) < ((u) < (((