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Motivation

Recall the previously introduced algorithms:

• Execute ε-greedy by choosing εt =min{1,Ct−1∆−2
minm}.

• Run ETC with k = ⌈ 2
∆2W (T

2∆4

32π
)⌉

Limitation of ε-greedy and ETC.

1. Executing the algorithm requires the knowledge of ∆, which is usually not

available in real applications.

2. The algorithm uses T , but the horizon is unknown in real applications.

3. The theoretical result obtained by ETC is applied to 2-armed bandits only.
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The UCB Algorithms
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The Optimism Principle

The UCB algorithm is based on the principle of optimism in the face of uncertainty,

which states that

one should act as if the environment is as nice as plausibly possible.

In fact, this principle is applicable to other bandit algorithms as well and is beyond the

finite-armed stochastic bandit problem.
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The Optimism Principle

For UCB, the optimism principle means using the data observed so far to assign to each

arm a value, called the upper confidence bound. The first term,

µ̂i ,t−1 =
1

Ni ,t−1

∑
t ′≤t−1

rt ′1{at ′ = i} ,

is the empirical mean of the rewards collected from arm i , where

Ni ,t−1 =
∑

t ′≤t−11{at ′} is the number of times arm i has been pulled up to time t−1.
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The Optimism Principle

Recall the Chernoff-Hoeffding bound for n independent 1-sub-Gaussian random variables

P(X −E[X ]≥ z)≤ exp(−nz2/2) .

The term
√

2 log(1/δ)
Ni ,t−1

, is an at least (1−δ )-order statistics of µi . With high probability

the UCB term is an overestimate of the unknown mean, if Ni ,t−1 is a constant

P(µi ≥ µ̂i ,t−1+

√
2 log(1/δ )

Ni ,t−1
)≤ δ .

While Ni ,t−1 is also a random variable that is not independent of µ̂i ,t−1, the claim holds

up to constant factors (Exercise 7.1 on the book).
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The Regret of UCB Algorithms

The UCB Algorithm explores all arms exactly once and then estimates each arm using

the (sample-mean based) upper bound of its δ -confidence interval.

Intuitively, the arm chosen in round t either

• Has a large sample mean,

• Remain underexplored compared to other arms.
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The Regret of UCB Algorithms

The key ingredient lies in choosing a good confidence level δ , which again balances the

trade-off between exploration and exploitation.

Theorem
Assume the rewards of arms are 1-sub-Gaussian. Let δ = T−2. The regret under UCB

is at most

RT ≤ 3
m∑
i=1

∆i +
∑

i :∆i>0

16 logT
∆i

.

UCB does not require knowledge on the suboptimality gaps.
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The Regret of UCB Algorithms

The UCB Theorem may seem loose when ∆i are small. This can be fixed by separating

the arms into two parts: those with a sub-optimality gap less than
√

16m logT/T and

greater than
√

16m logT/T . Bounding E[Ni ,T ] by T in the first part and by the UCB

Theorem in the second part gives

RT ≤ 3
∑
i∈[m]

∆i +8
√
mT logT . (1)
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The Regret of UCB Algorithms

There are a few things we could consider for extension.

• The confidence level in UCB Theorem depends on horizon T . This can be

removed by choosing δ in a decreasing format, say, δt = (1+ t log2 t)−1.

• The Hoeffding inequality used in the algorithm can be rather loose sometimes. For

example, consider the Bernoulli bandits whose means are close to 0 or 1. In such

situations, one could apply the Chernoff bound instead, which gives a confidence

interval based on relative entropy.
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Question and Answering (Q&A)
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