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Greedy algorithms
Greedy Algorithm: 1) pull each arm once and then 2) always pull the arm with the

best empirical mean reward.
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The Regret of Greedy algorithms

Consider a two-armed bandit instance where r(1) and r(2) follow Bernoulli distributions

with mean p and q (with p > q) respectively.

• If the event (r1 = 0, r2 = 1) (with probability q(1−p)) is true, the algorithm will

pull arm 2 for the rest of the horizon.

• induce a regret of at least q(1−p)∆2T +o(T ).

The worst-case regret of the greedy algorithm is O(T ) (Note O(T ) is the worst).
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The Regret of Greedy algorithms

• A function f (n) is said to be O(g(n)) if there exist positive constants C and n0

such that for all n ≥ n0:

|f (n)| ≤ C · |g(n)|

• A function f (n) is said to be o(g(n)) if for every positive constant ε , there exists a

constant n0 such that for all n ≥ n0:

|f (n)|< ε · |g(n)|

4 / 9



ε Greedy algorithms
ε-greedy algorithm: takes a non-deterministic policy that forces exploration on

sub-optimal arms. which is built upon the philosophy of being optimistic is good.
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The Regret of ε Greedy algorithms

The algorithm amounts to the choice of the exploration parameters εt .

• εt does not diminish with t. In fact, if εt > ε holds for some constant ε > 0, then

for T −m rounds, the algorithm has a probability at least ε to pull a random arm.

As pulling a random arm induces an expected regret of 1
m (∆2+ · · ·+∆m) per step

(arm 1 is the best, so ∆1 = 0), the regret of the algorithm is at least:

Rt ≥
1
m
(∆2+ · · ·+∆m)ε(T −m).

The worst-case regret of the greedy algorithm is O(T ).
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The Regret of ε Greedy algorithms
The algorithm amounts to the choice of the exploration parameters εt .

• By carefully choosing εt as a decreasing function of t, we can obtain an algorithm

with its regret at most O(logT ).

Theorem
Assume that r(i) is 1-sub-Gaussian for each i . By choosing εt =min{1,Ct−1∆−2

minm}
for some sufficiently large constant C , the regret under the ε-greedy algorithm satisfies

RT ≤ C ′
∑
i≥2

(
∆i +

∆i

∆2
min

logmax

{
e,

T∆2
min

m

})
,

where C ′ is an absolute constant.
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Proof Schema

The proof of the theorem is two-fold.

• The cost of exploration, being Rt =
1
m (∆2+ · · ·+∆m)ε for εt = O(1), reduces to

Rt =
1
m (∆2+ · · ·+∆m)O(1+ 1

2 + · · ·+ 1
T ) = 1

m (∆2+ · · ·+∆m)O(logT )1 with the

annealing of εt .

• Show that the probability of pulling a suboptimal arm in a round after logT

explorations is very thin (as thin as at most O(logT/T )).

1The nth partial sum of the harmonic series,

Hn = 1+1/2+1/3+ ...+1/n, is approximately log(n)
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Some Remarks of ε Greedy algorithms

Remarks of the Theorem:

• ε-greedy algorithm is the first algorithm we introduce to obtain a logarithmic

regret (this is in fact the best regret).

• The choice for ε requires information on the gap of suboptimality.

Without prior knowledge, one has to pull each arm for a few times to get an estimation

of this gap and plug in the estimation (known as bootstrap).
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Question and Answering (Q&A)
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