Lecture 4 - Greedy algorithms

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning Course Page: [Click]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つへぐ

DDA 4230 Resources

Join our Wechat discussion group.

Check our course page.

Course Page Link (all the course relevant materials will be posted here):

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

2/9

A D A A B A A B A A B A

Greedy algorithms

Greedy Algorithm: 1) pull each arm once and then 2) always pull the arm with the best empirical mean reward.

Algorithm 1: The greedy algorithm **Output:** $\pi(t), t \in \{0, 1, \dots, T\}$ while 0 < t < m - 1 do $\pi(t) = t + 1$ while $m \le t \le T$ do $\pi(t) = rgmax_{i \in [m]} \left\{ rac{1}{N_{t-1,i}} \sum_{t'=0}^{t-1} r_{t'} \mathbb{1}\{a_{t'} = i\}
ight\}$ r. Shenzhen

The Regret of Greedy algorithms

Consider a two-armed bandit instance where r(1) and r(2) follow Bernoulli distributions with mean p and q (with p > q) respectively.

- If the event $(r_1 = 0, r_2 = 1)$ (with probability q(1-p)) is true, the algorithm will pull arm 2 for the rest of the horizon.
- induce a regret of at least $q(1-p)\Delta_2 T + o(T)$.

The worst-case regret of the greedy algorithm is O(T) (Note O(T) is the worst).

The Regret of Greedy algorithms

A function f(n) is said to be O(g(n)) if there exist positive constants C and n₀ such that for all n ≥ n₀:

 $|f(n)| \leq C \cdot |g(n)|$

A function f(n) is said to be o(g(n)) if for every positive constant ε, there exists a constant n₀ such that for all n ≥ n₀:

 $|f(n)| < \varepsilon \cdot |g(n)|$

${m \epsilon}$ Greedy algorithms

 ε -greedy algorithm: takes a non-deterministic policy that forces exploration on sub-optimal arms. which is built upon the philosophy of being optimistic is good.

Algorithm 2: The ε -greedy algorithm **Input:** $\varepsilon_t, t \in \{0, 1, \dots, T\}$ the exploration parameters **Output:** $\pi(t), t \in \{0, 1, ..., T\}$ while 0 < t < m - 1 do $\pi(t) = t + 1$ while m < t < T do $\pi(t) \sim \begin{cases} \arg \max_{i \in [m]} \left\{ \frac{1}{N_{t-1,i}} \sum_{t'=0}^{t-1} r_{t'} \mathbb{1}\{a_{t'} = i\} \right\} & \text{with probability } 1 - \varepsilon_t \\ i & \text{with probability } \varepsilon_t/m, \text{ for each } i \in [m] \end{cases}$ 深圳) Hong Kong, Shenzhen

The Regret of arepsilon Greedy algorithms

The algorithm amounts to the choice of the exploration parameters ε_t .

ε_t does not diminish with t. In fact, if ε_t > ε holds for some constant ε > 0, then for T − m rounds, the algorithm has a probability at least ε to pull a random arm. As pulling a random arm induces an expected regret of 1/m(Δ₂ + ··· + Δ_m) per step (arm 1 is the best, so Δ₁ = 0), the regret of the algorithm is at least:

$$\overline{R}_t \geq \frac{1}{m}(\Delta_2 + \cdots + \Delta_m)\varepsilon(T-m).$$

The worst-case regret of the greedy algorithm is O(T).

イロン 不良 とくほど 不良 とうほ

The Regret of arepsilon Greedy algorithms

The algorithm amounts to the choice of the exploration parameters \mathcal{E}_t .

• By carefully choosing ε_t as a decreasing function of t, we can obtain an algorithm with its regret at most $O(\log T)$.

Theorem

Assume that r(i) is 1-sub-Gaussian for each *i*. By choosing $\varepsilon_t = \min\{1, Ct^{-1}\Delta_{\min}^{-2}m\}$ for some sufficiently large constant *C*, the regret under the ε -greedy algorithm satisfies

$$\overline{R}_{\mathcal{T}} \leq C' \sum_{i \geq 2} \left(\Delta_i + \frac{\Delta_i}{\Delta_{\min}^2} \log \max \left\{ e, \frac{T \Delta_{\min}^2}{m} \right\} \right),$$

where C' is an absolute constant.

Proof Schema

The proof of the theorem is two-fold.

- The cost of exploration, being $\overline{R}_t = \frac{1}{m}(\Delta_2 + \dots + \Delta_m)\varepsilon$ for $\varepsilon_t = O(1)$, reduces to $\overline{R}_t = \frac{1}{m}(\Delta_2 + \dots + \Delta_m)O(1 + \frac{1}{2} + \dots + \frac{1}{T}) = \frac{1}{m}(\Delta_2 + \dots + \Delta_m)O(\log T)^1$ with the annealing of ε_t .
- Show that the probability of pulling a suboptimal arm in a round after log T explorations is very thin (as thin as at most $O(\log T/T)$).

¹The nth partial sum of the harmonic series, $H_n = 1 + 1/2 + 1/3 + ... + 1/n$, is approximately $\log(n)$

7/9

Some Remarks of ${m arepsilon}$ Greedy algorithms

Remarks of the Theorem:

- ε-greedy algorithm is the first algorithm we introduce to obtain a logarithmic regret (this is in fact the best regret).
- The choice for ε requires information on the gap of suboptimality.

Without prior knowledge, one has to pull each arm for a few times to get an estimation of this gap and plug in the estimation (known as bootstrap).

Question and Answering (Q&A)

シック・ヨ・イヨ・イヨ・ 小口・ 9/9