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Greedy algorithms

Greedy Algorithm: 1) pull each arm once and then 2) always pull the arm with the

best empirical mean reward.

Algorithm 1: The greedy algorithm
Output: =(¢),t € {0,1,...,T}
while 0 <t<m—1do

m(t)=t+1

while m <t <T do

t—1
1
m(t) = arg max rel{ay =1
(t) g {Nt—l,iE v 1{a }}

i€[m] =0
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The Regret of Greedy algorithms

Consider a two-armed bandit instance where r(1) and r(2) follow Bernoulli distributions

with mean p and g (with p > q) respectively.

e |If the event (rn =0, = 1) (with probability (1 — p)) is true, the algorithm will

pull arm 2 for the rest of the horizon.
® induce a regret of at least (1 —p)AT +0o(T).
The worst-case regret of the greedy algorithm is O(T) (Note O(T) is the worst).
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The Regret of Greedy algorithms

e A function f(n) is said to be O(g(n)) if there exist positive constants C and ng

such that for all n > ng:
[f(n)| < C-|g(n)]

e A function f(n) is said to be o(g(n)) if for every positive constant &, there exists a

constant ng such that for all n > ng:

|[f(n)] <e&-lg(n)|
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€ Greedy algorithms

e-greedy algorithm: takes a non-deterministic policy that forces exploration on

sub-optimal arms. which is built upon the philosophy of being optimistic is good.

Algorithm 2: The e-greedy algorithm
Input: &,t € {0,1,...,T} the exploration parameters
Output: #(t),t € {0,1,...,T}
while 0 <t <m —1do

m(t) =t+1

while m <t <T do

arg max ryl{ay =i} p with probability 1 — ¢
ﬂ'(t) ~ i€[m)] { t 1,i Z }

i with probability ;/m, for each i € [m)] % 1)
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The Regret of € Greedy algorithms

The algorithm amounts to the choice of the exploration parameters &;.

® ¢; does not diminish with t. In fact, if & > € holds for some constant € > 0, then
for T — m rounds, the algorithm has a probability at least € to pull a random arm.
As pulling a random arm induces an expected regret of %(A2+---+Am) per step

(arm 1 is the best, so A; = 0), the regret of the algorithm is at least:

1

The worst-case regret of the greedy algorithm is O(T).
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The Regret of € Greedy algorithms

The algorithm amounts to the choice of the exploration parameters &;.
® By carefully choosing &; as a decreasing function of t, we can obtain an algorithm
with its regret at most O(log T).
Theorem
Assume that r(i) is 1-sub-Gaussian for each i. By choosing & = min{1, Ct"*A_2 m}

for some sufficiently large constant C, the regret under the e-greedy algorithm satisfies

_ A T2,
Rt < C'Z (A,-+ A2 Iogmax{e,mm”‘}> ,

i>2 min
L

G
cIrren
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Proof Schema

The proof of the theorem is two-fold.
® The cost of exploration, being Ry = L(Ax+---+Ap,)e for & = O(1), reduces to
Ri=1(Do+ - +An)0Q+3++1)=L(A+ -+ Ap)O(log T)! with the
annealing of &.

® Show that the probability of pulling a suboptimal arm in a round after log T
explorations is very thin (as thin as at most O(log T/ T)).

&l,"-ﬁ‘n‘!,'-
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Some Remarks of € Greedy algorithms

Remarks of the Theorem:

e g-greedy algorithm is the first algorithm we introduce to obtain a logarithmic

regret (this is in fact the best regret).
® The choice for € requires information on the gap of suboptimality.

Without prior knowledge, one has to pull each arm for a few times to get an estimation

of this gap and plug in the estimation (known as bootstrap).
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Question and Answering (Q&A)
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