Lecture 4 - Greedy algorithms

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning Course Page: [\[Click\]](https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html)

K ロ ▶ K 레 ▶ K 호 ▶ K 호 ▶ 『 호 Ⅰ 1 1 9 9 0 0

DDA 4230 Resources

Join our Wechat discussion group. Check our course page.

Course Page Link (all the course relevant materials will be posted here):

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

イロト イ押 トイヨ トイヨト Ω 2 / 9

Greedy algorithms

Greedy Algorithm: 1) pull each arm once and then 2) always pull the arm with the best empirical mean reward.

Algorithm 1: The greedy algorithm **Output:** $\pi(t), t \in \{0, 1, ..., T\}$ while $0 \leq t \leq m-1$ do $\pi(t) = t + 1$ while $m \leq t \leq T$ do $\pi(t) = \argmax_{i \in [m]} \left\{ \frac{1}{N_{t-1,i}} \sum_{t'=0}^{t-1} r_{t'} \mathbbm{1}\{a_{t'} = i\} \right\}.$ r, Shenzhen

The Regret of Greedy algorithms

Consider a two-armed bandit instance where $r(1)$ and $r(2)$ follow Bernoulli distributions with mean p and q (with $p > q$) respectively.

- If the event $(r_1 = 0, r_2 = 1)$ (with probability $q(1-p)$) is true, the algorithm will pull arm 2 for the rest of the horizon.
- induce a regret of at least $q(1-p)\Delta_2T+o(T)$.

The worst-case regret of the greedy algorithm is $O(T)$ (Note $O(T)$) is the worst).

KORK EX KEY A BY A GOOD

The Regret of Greedy algorithms

• A function $f(n)$ is said to be $O(g(n))$ if there exist positive constants C and n_0 such that for all $n \geq n_0$:

 $|f(n)| < C \cdot |g(n)|$

• A function $f(n)$ is said to be $o(g(n))$ if for every positive constant ε , there exists a constant n_0 such that for all $n > n_0$:

 $|f(n)| < \varepsilon \cdot |g(n)|$

イロト イ御 トメ ヨ トメ ヨ トー ヨ

ε Greedy algorithms

 ε -greedy algorithm: takes a non-deterministic policy that forces exploration on sub-optimal arms. which is built upon the philosophy of being optimistic is good.

> **Algorithm 2:** The ε -greedy algorithm **Input:** $\varepsilon_t, t \in \{0, 1, ..., T\}$ the exploration parameters **Output:** $\pi(t), t \in \{0, 1, ..., T\}$ while $0 \leq t \leq m-1$ do $\pi(t) = t + 1$ while $m \leq t \leq T$ do $\pi(t) \sim \left\{ \begin{aligned} &\argmax_{i \in [m]} \left\{ \frac{1}{N_{t-1,i}} \sum_{t'=0}^{t-1} r_{t'} \mathbbm{1}\{a_{t'}=i\} \right\} \hspace{1em} \text{with probability } 1-\varepsilon_t \\ & i \quad \text{with probability } \varepsilon_t/m, \text{ for each } i \in [m] \end{aligned} \right.$ 深圳) Hong Kong, Shenzhen イロト イ御 トメ ヨ トメ ヨ トー ヨ 2040

The Regret of ε Greedy algorithms

The algorithm amounts to the choice of the exploration parameters ε_t .

• ε_t does not diminish with t. In fact, if $\varepsilon_t > \varepsilon$ holds for some constant $\varepsilon > 0$, then for $T - m$ rounds, the algorithm has a probability at least ε to pull a random arm. As pulling a random arm induces an expected regret of $\frac{1}{m}(\Delta_2+\cdots+\Delta_m)$ per step (arm 1 is the best, so $\Delta_1 = 0$), the regret of the algorithm is at least:

$$
\overline{R}_t \geq \frac{1}{m}(\Delta_2 + \cdots + \Delta_m)\varepsilon(T-m).
$$

The worst-case regret of the greedy algorithm is $O(T)$.

イロト イ御 トメ ヨ トメ ヨ トー ヨ

6 / 9

The Regret of ε Greedy algorithms

The algorithm amounts to the choice of the exploration parameters ε_t .

• By carefully choosing ε_t as a decreasing function of t, we can obtain an algorithm with its regret at most $O(\log T)$.

Theorem

Assume that r(i) is 1-sub-Gaussian for each i. By choosing $\varepsilon_t = \min\{1, Ct^{-1}\Delta_{\min}^{-2}m\}$ for some sufficiently large constant C, the regret under the ε-greedy algorithm satisfies

$$
\overline{R}_T \leq C' \sum_{i \geq 2} \left(\Delta_i + \frac{\Delta_i}{\Delta_{\min}^2} \log \max \left\{ e, \frac{T \Delta_{\min}^2}{m} \right\} \right),
$$

where C' is an absolute constant.

 $A \Box B$ B

Proof Schema

The proof of the theorem is two-fold.

- \bullet The cost of exploration, being $\overline{R}_t = \frac{1}{n}$ $\frac{1}{m}(\Delta_2 + \cdots + \Delta_m)\varepsilon$ for $\varepsilon_t = O(1)$, reduces to $\overline{R}_t = \frac{1}{n}$ $\frac{1}{m}(\Delta_2+\cdots+\Delta_m)O(1+\frac{1}{2}+\cdots+\frac{1}{7})$ $(\frac{1}{\tau}) = \frac{1}{m}(\Delta_2 + \cdots + \Delta_m)O(\log T)^1$ with the annealing of ε_t .
- Show that the probability of pulling a suboptimal arm in a round after log T explorations is very thin (as thin as at most $O(\log T/T)$).

 1 The nth partial sum of the harmonic series, $H_n = 1 + 1/2 + 1/3 + ... + 1/n$, is approximately $log(n)$

7 / 9

 QQQ

Some Remarks of ε Greedy algorithms

Remarks of the Theorem:

- \bullet ε -greedy algorithm is the first algorithm we introduce to obtain a logarithmic regret (this is in fact the best regret).
- The choice for ε requires information on the gap of suboptimality.

Without prior knowledge, one has to pull each arm for a few times to get an estimation of this gap and plug in the estimation (known as bootstrap).

 $A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B$

Question and Answering (Q&A)

メロメ メ御 トメ ミメ メ ミメー 299 9 / 9