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Multi-Armed Bandits
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Multi-Armed Bandits

The problem of multi-armed bandits (MAB) is a special case of the MDP (focusing on

exploration), we defined

e S ={1}; (degenerated to dummy state)

e A=[m|={1,2,...,m};

® 7T(s,a)=1;

® R(s,a) = r(a) some unknown stochastic function r(-);

®* po=1

o y=1.

® |t terminates at t = T. AP Xk # R
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Multi-Armed Bandits

The key properties of a MAB problem are:

The reward functions r(a) are not known and can only be inferred using historical
observations.

The multi-armed bandit problem is a simple MDP with a dummy state while we
investigate it with model-based methods, recall S = {1}, T(s,a) =1, and
R(s,a) = r(a).

The MAB has a finite horizon T. the optimal policy 7(-,t) maps the historical

data and the time t to an action.
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Multi-Armed Bandits

The key properties of a MAB problem are:

® The optimal policy could be a stochastic policy that maps the historical data and

the time t to an action.

® We can view the difference of 7(-,t) and m(-,t+ 1) as if this policy is updated
through historical data at time t.
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Multi-Armed Bandits

The performance of an agent is characterized by the term regret: the difference between

the maximum possible expected return and the expected return of the agent, as:

t

Re = (t+1)maxE[r(a)] ~E[> r].

t'=0
Remark:
1. (t+1)max,E[r(a)] is a constant.
2. Maximizing R; (cumulative rewards) is equivalent to minimize R;.
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Multi-Armed Bandits

® The mean of the reward of the i-th arm (action): u; = E[r(/)].

® The expected reward of an optimal arm: u* = max; ;.

® The optimality action gap: A; = pu* — u; (unity loss due to sub-optimality).
® The natural filtration: N;, => 1 _o1{ay = i}.

Based on the aforementioned definitions, we alternatively write the regret into:

Re=> E[Ni A,
i=1
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Some Examples of Bandits

¢ Investment. Each morning, you choose one stock to invest into, and invest $1. In
the end of the day, you observe the change in value for each stock. Goal: to

maximize wealth.

Example Action Reward Full feedback

Investment | a stock to invest into | change in value during | change in value for all

the day other stocks
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Some Examples of Bandits

e Dynamic Pricing. A store is selling a digital good (e.g., an app or a song). When

a new customer arrives, the store picks a price. Customer buys (or not) and leaves

forever. Goal: to maximize total profit.

Example

Action

Reward

Partial feedback

Dynamic pricing

a price p

p if sale; 0 otherwise

sale = sale at
any smaller price;
no sale = no sale

at any larger price
. o
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Some Examples of Bandits

® News Site. When a new user arrives, the site picks a news header to show,

observes whether the user clicks. Goal: to maximize the number of clicks.

Example

Action

Reward

Bandit feedback

News site

an article to display

1 if clicked, 0 other-

wise

none
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Type of Feedback

These examples correspond to the 3 types of feedback
o Full feedback. The reward is revealed for all arms;
e Partial feedback. The reward is revealed for some but not necessarily for all arms;

e Bandit feedback. The reward is revealed only for the chosen arm.
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Type of Feedback

These examples correspond to the 3 types of feedback
o Full feedback. The reward is revealed for all arms;
e Partial feedback. The reward is revealed for some but not necessarily for all arms;
® Bandit feedback. The reward is revealed only for the chosen arm.
In a MAB problem, the agent needs to both:
® Exploit the historical information to choose high-reward arms (exploitation)

® Deploy actions to collect more information (exploration).

The exploration-exploitation tradeoff is most important in RL!
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Type of Rewards

In our MAB, the reward function depends only on a, i.e. R(s,a) = r(a).

® Rewards that are i.i.d. The reward for each arm is drawn independently from a

fixed distribution that depends on the arm but not on the round index t;
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Type of Rewards

In our MAB, the reward function depends only on a, i.e. R(s,a) = r(a).

® Rewards that are i.i.d. The reward for each arm is drawn independently from a

fixed distribution that depends on the arm but not on the round index t;
® Adversarial rewards. Rewards are chosen by an adversary (Maximize R;).

e Strategic rewards. Rewards are chosen by an adversary with known constraints,

such as reward of each arm can change by at most B from one round to another.

® Stochastic rewards. Reward of each arm follows some stochastic process or

random walk.
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Concentration Inequalities
The setting:
® Let Xi,...,X, be independent random variables and assume that E[X;] exists.
® Let X = %(Xl +-+-+X,) denote the average.

Then, the strong law of large number indicates that when n approaches infinity,
P(X =E[X])=1.

A concentration inequality bounds both the error term and the probability term in the

number n of samples:
P(IX —E[X]| < &(n)) > 1-8(n),
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Concentration Inequalities

Lemma (Chebyshev's inequality)

Let X1,...,X, be i.i.d and assume that the variance V[X;] = o2 exists, then

_ . o2
P(|X-E[X]|<z)>1-—.
(X-EX|<2)>1-2
Note that ,%22 is O(L), not very ideal for RL.
Proof: See Chebyshev's inequality on Wikipedia.
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Concentration Inequalities

Lemma (Hoeffding's inequality)

If 0 < X; < ¢ for each X;, then for

P(X —E[X]<z)>1- exp(—zgf ).

Note that exp(—@) is O(Z), better for RL.

c2
Proof: See Hoeffding's lemma on Wikipedia.
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Concentration Inequalities

Lemma (The Chernoff-Hoeffding inequality)
For a >0 and t > 1, if X; ~ N(0,1) for each X, then for

(X — E[X]| < \/“':gt) >1_opel?.
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Concentration Inequalities

For random variables that are not necessarily identically distributed and not necessarily

independent, similar results hold when the conditional expectations are constant.

Lemma (The Azuma-Hoeffding inequality)

For random variables X, ..., X, € [0,1] with constant conditional expectations
Wi :]E[X,' ’ X,',l,...,Xl] fori=1,...,n, then

- 1 ologt _
P(X — —(sat o+ )| < S0 ) 212672
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Concentration Inequalities

Lemma (Bernstein's inequalities)

For independent Rademacher random variables X1, ..., X, € {—1,1},

- nz?
B(XI <2) 2 1-200(- 57 ).
An alternative form of Bernstein's inequalities states that for Bernoulli random variables
where the total variance Y7, V[x; | x;_1,...,x1] = 62, then
- - n?z?
P(X-E[X]<z)>1 —eXP(—m)-
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Tail bounds

Lemma (Gaussian tail bound)

If X ~ N(0,1), then for x >0,
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Tail bounds

Lemma (Gaussian tail bound)
For a 62-sub-Gaussian random variable X, for z > 0,
2

P(X~EIX] < 2) > 1-exp(~ 7).
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Question and Answering (Q&A)

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

9/9



