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Multi-Armed Bandits
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Multi-Armed Bandits

The problem of multi-armed bandits (MAB) is a special case of the MDP (focusing on

exploration), we defined

• S = {1}; (degenerated to dummy state)

• A= [m] = {1,2, . . . ,m};

• T (s,a) = 1;

• R(s,a) = r(a) some unknown stochastic function r(·);

• ρ0 = 1;

• γ = 1.

• It terminates at t = T .
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Multi-Armed Bandits

The key properties of a MAB problem are:

• The reward functions r(a) are not known and can only be inferred using historical

observations.

• The multi-armed bandit problem is a simple MDP with a dummy state while we

investigate it with model-based methods, recall S = {1}, T (s,a) = 1, and

R(s,a) = r(a).

• The MAB has a finite horizon T . the optimal policy π(·, t) maps the historical

data and the time t to an action.
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Multi-Armed Bandits

The key properties of a MAB problem are:

• The optimal policy could be a stochastic policy that maps the historical data and

the time t to an action.

• We can view the difference of π(·, t) and π(·, t+1) as if this policy is updated

through historical data at time t.
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Multi-Armed Bandits

The performance of an agent is characterized by the term regret: the difference between

the maximum possible expected return and the expected return of the agent, as:

Rt = (t+1)max
a

E [r(a)]−E
[ t∑
t ′=0

rt ′
]
.

Remark:

1. (t+1)maxaE [r(a)] is a constant.

2. Maximizing Rt (cumulative rewards) is equivalent to minimize Rt .
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Multi-Armed Bandits

• The mean of the reward of the i-th arm (action): µi = E[r(i)].

• The expected reward of an optimal arm: µ∗ =maxi µi .

• The optimality action gap: ∆i = µ∗−µi (unity loss due to sub-optimality).

• The natural filtration: Ni ,t =
∑t

t ′=01{at ′ = i}.

Based on the aforementioned definitions, we alternatively write the regret into:

Rt =
m∑
i=1

E [Ni ,t ]∆i .
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Some Examples of Bandits

• Investment. Each morning, you choose one stock to invest into, and invest $1. In

the end of the day, you observe the change in value for each stock. Goal: to

maximize wealth.

Example Action Reward Full feedback

Investment a stock to invest into change in value during

the day

change in value for all

other stocks
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Some Examples of Bandits

• Dynamic Pricing. A store is selling a digital good (e.g., an app or a song). When

a new customer arrives, the store picks a price. Customer buys (or not) and leaves

forever. Goal: to maximize total profit.

Example Action Reward Partial feedback

Dynamic pricing a price p p if sale; 0 otherwise sale ⇒ sale at

any smaller price;

no sale ⇒ no sale

at any larger price
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Some Examples of Bandits

• News Site. When a new user arrives, the site picks a news header to show,

observes whether the user clicks. Goal: to maximize the number of clicks.

Example Action Reward Bandit feedback

News site an article to display 1 if clicked, 0 other-

wise

none
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Type of Feedback

These examples correspond to the 3 types of feedback

• Full feedback. The reward is revealed for all arms;

• Partial feedback. The reward is revealed for some but not necessarily for all arms;

• Bandit feedback. The reward is revealed only for the chosen arm.
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Type of Feedback

These examples correspond to the 3 types of feedback

• Full feedback. The reward is revealed for all arms;

• Partial feedback. The reward is revealed for some but not necessarily for all arms;

• Bandit feedback. The reward is revealed only for the chosen arm.

In a MAB problem, the agent needs to both:

• Exploit the historical information to choose high-reward arms (exploitation)

• Deploy actions to collect more information (exploration).

The exploration-exploitation tradeoff is most important in RL!
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Type of Rewards

In our MAB, the reward function depends only on a, i.e. R(s,a) = r(a).

• Rewards that are i.i.d. The reward for each arm is drawn independently from a

fixed distribution that depends on the arm but not on the round index t;
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Type of Rewards

In our MAB, the reward function depends only on a, i.e. R(s,a) = r(a).

• Rewards that are i.i.d. The reward for each arm is drawn independently from a

fixed distribution that depends on the arm but not on the round index t;

• Adversarial rewards. Rewards are chosen by an adversary (Maximize Rt).

• Strategic rewards. Rewards are chosen by an adversary with known constraints,

such as reward of each arm can change by at most B from one round to another.

• Stochastic rewards. Reward of each arm follows some stochastic process or

random walk.
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Concentration Inequalities
The setting:

• Let X1, . . . ,Xn be independent random variables and assume that E[Xi ] exists.

• Let X = 1
n (X1+ · · ·+Xn) denote the average.

Then, the strong law of large number indicates that when n approaches infinity,

P(X = E[X ]) = 1 .

A concentration inequality bounds both the error term and the probability term in the

number n of samples:

P(|X −E[X ]| ≤ ε(n))≥ 1−δ (n) ,

where ε(n) and δ (n) converge to 0 when n approaches infinity.
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Concentration Inequalities

Lemma (Chebyshev’s inequality)

Let X1, . . . ,Xn be i.i.d and assume that the variance V[Xi ] = σ2 exists, then

P(|X −E[X ]| ≤ z)≥ 1− σ2

nz2 .

Note that σ2

nz2 is O( 1
n ), not very ideal for RL.

Proof: See Chebyshev’s inequality on Wikipedia.
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Concentration Inequalities

Lemma (Hoeffding’s inequality)

If 0 ≤ Xi ≤ c for each Xi , then for

P(X −E[X ]≤ z)≥ 1− exp(−2nz2

c2 ) .

Note that exp(−2nz2

c2 ) is O( 1
en ), better for RL.

Proof: See Hoeffding’s lemma on Wikipedia.
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Concentration Inequalities

Lemma (The Chernoff-Hoeffding inequality)

For α > 0 and t > 1, if Xi ∼N (0,1) for each Xi , then for

P(|X −E [X ]| ≤
√

α log t

n
)≥ 1−2t−α/2 .
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Concentration Inequalities

For random variables that are not necessarily identically distributed and not necessarily

independent, similar results hold when the conditional expectations are constant.

Lemma (The Azuma-Hoeffding inequality)

For random variables X1, . . . ,Xn ∈ [0,1] with constant conditional expectations

µi = E[Xi | Xi−1, . . . ,X1] for i = 1, . . . ,n, then

P(|X − 1
n
(µ1+ · · ·+µn)| ≤

√
α log t

n
)≥ 1−2t−2α .
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Concentration Inequalities

Lemma (Bernstein’s inequalities)

For independent Rademacher random variables X1, . . . ,Xn ∈ {−1,1},

P(|X | ≤ z)≥ 1−2exp(− nz2

2(1+ z
3)

) .

An alternative form of Bernstein’s inequalities states that for Bernoulli random variables

where the total variance
∑n

i=1V[xi | xi−1, . . . ,x1] = σ2, then

P(X −E[X ]≤ z)≥ 1− exp(− n2z2

2σ2+nz
) .
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Tail bounds

Lemma (Gaussian tail bound)

If X ∼N (0,1), then for x > 0,

1√
2π

(
1
x
− 1

x3 )exp(−
x2

2
)≤ P(X ≥ x)≤ 1√

2πx
exp(−x2

2
) .
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Tail bounds

Lemma (Gaussian tail bound)

For a σ2-sub-Gaussian random variable X , for z ≥ 0,

P(X −E[X ]≤ z)≥ 1− exp(− z2

2σ2 ) .
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Question and Answering (Q&A)
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