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An Introduction to Embodied AI

What is "Embodied AI"?

Embodied → "Possessing or existing in bodily form".

Embodied AI learns through interactions with environments from an egocentric

perception similar to humans, instead of learning from a fixed dataset.

• Data-Driven AI: Learning from a fixed demonstration dataset.

• Embodied AI: Learning by interacting with the environment.
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An Introduction to Embodied AI

Example of embodied AI:

Autonomous Driving (e.g., SUMO, Carla). Robot Control (e.g., MuJoCo, Issac Gym).

4 / 19



An Introduction to Embodied AI

Example of embodied AI:

Board Games (e.g., AlphaGo, AlphaZero). Video Games (e.g., AlphaStar, OpenAI5).
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An Introduction to Embodied AI

Embodied AI under the era of large models.
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An Introduction to Embodied AI

Develop a Vision Language Agent (VLA) to learn generalist policies for robotic control.

Kim, Moo Jin, et al. "OpenVLA: An Open-Source Vision-Language-Action Model." arXiv preprint (2024).
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An Introduction to Embodied AI

Embodied AI in the Pass:

• Goal: Task-Specific Agent.

• Observation: Single Modality.

• Environment: Virtual Environment.

• Methods: Reinforcement Learning,

Motion planning, and Optimization.

Embodied AI Nowadays:

• Goal: Generalist Agent.

• Observation: Multi Modality.

• Environment: Realistic Environment.

• Methods: Reinforcement Learning,

Large Multimodal and Decision Model.
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Lessons from LLM: Your Data’s Size Matters
By exhausting more data, one can train strong LLM!
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Lessons from LLM: Your Data’s Size Matters
Rumors suggest that to update from LLM to VLM, GPT-4 has nearly consumed all the

available data. What about "GPT5"?
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Data Collection for VLA
LLM and VLM Training Data:

• Language and image data (e.g., VQA

data) that are commonly available.

VLA Training Data:

• Robotic control skills (e.g., 16 DOF

Joints) that are less common.
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Data Collection for VLA
Manual Tele-Operation:

• Manually control a robot to finish

tasks with wearable equipment.

Shadowing and Retargeting

• Use a camera for estimating poses,

retarget them to robotic movements.
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Data Collection for VLA
"In this manner, can we generate trillions of data for support VLA training?"

"We made some progress, but not sure if it is tractable and efficient."
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A Sim-to-Real Approach to Embodied AI

Instead of collecting data from the real world, can we generate data from the simulated

environments?
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A Sim-to-Real Approach to Embodied AI
Limitations of the current Sim-to-Real.

• Lack of diversity in the operating robots (e.g., MuJoCo).
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A Sim-to-Real Approach to Embodied AI

Limitations of the current Sim-to-Real.

• The number of simulated tasks is limited.
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A Sim-to-Real Approach to Embodied AI

Limitations of the current Sim-to-Real.

• The complexity between the simulated and real environment is significant.

Simulation. Realistic Office. Realistic Kitchen.
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A Sim-to-Real Approach to Embodied AI
Sim-to-Real road-map in Embodied AI (Automated Skill Discovery).

Wang, Yufei, et al. "Robogen: Towards unleashing infinite data for automated robot learning via generative simulation." arXiv preprint

arXiv:2311.01455 (2023)
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Task Proposal

• Load the robot and its dynamics (e.g., the Degree of Freedom (DoF), size, and

visual texture) to the simulator.

Realistic Dexterous Hand Realistic Robot Arm Simulated Arm and Hand
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Task Proposal

• Load the 3D objects database to the simulator or generate more complex objects.

Objaverse-XL: An Open Dataset of Over 10

Million 3D Objects.

CAGE: generating 3D articulated objects in

a controllable fashion.

Deitke, Matt, et al. "Objaverse-xl: A universe of 10m+ 3d objects." NeurIPS 2024.

Liu, Jiayi, et al. "CAGE: Controllable Articulation GEneration." CVPR 2024.
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Task Proposal

• Task proposal and decomposition with LLM.

Nasiriany, Soroush, et al. "RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots." arXiv preprint
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Scene Generation
Generating indoor scenes in response to text prompts:

Aguina-Kang, Rio, et al. "Open-Universe Indoor Scene Generation using LLM Program Synthesis and Uncurated Object Databases."

arXiv preprint.
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Scene Generation

Generating indoor scenes in response to text prompts:

Aguina-Kang, Rio, et al. "Open-Universe Indoor Scene Generation using LLM Program Synthesis and Uncurated Object Databases."

arXiv preprint.
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Scene Generation
Generating realistic and diverse scenes with Robocasa.

11 / 19

https://robocasa.ai/


Skill Discovery: Training Supervision Generation

Given the proposed task and generated scenarios, it is time to discover useful skills with

the Reinforcement Learning (RL) algorithm.

• Skills refer to a policy that solves a specific under a specific scenario. This skill can
be embedded in the trajectory ψo = (s0,a0,s1,a1, . . . ,sHm ,aHm) where:

• State s encloses multi-modal observations, including 3d Cloud, RGB images,

language instructions, and tactile as well as force torque signals (or other

proprioception signals).
• Action a refers to specific control signals, e.g., the torques that can be applied to

each Degree of Freedom (DoF) in a robot.
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Skill Discovery: Training Supervision Generation

The RL objective can be generally represented as:

J(π) = Eµ0,PT ,π

[
∞∑

t=0

r(st ,at)+βH[π(at |st)]

]
s.t. Df (d

π∥dE )≤ ε

• Df indicates distributional divergence (KL-divergence, Wasserstein divergence).

• dE and dπ refer to the occupancy measures of the expert and learned distribution.

Solving the problem while aligning with the expert’s preference or style.

Embodied AI invites extra challenges!!!
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Challenge 1: Designing the Reward Function

The reward function r(st ,at) remained undefined in many embodied tasks.

• Naive rewards: "rewards = is_success".
• Significant sparsity: Requires extensive exploration and makes learning from sparse

rewards challenging.

• Manually rewards: manually design rewards for every tasks.
• Tractability issues: Relies excessively on human involvement, diminishing the

efficiency of learning across a substantial number of tasks.
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Challenge 1: Designing the Reward Function

• Automated Rewards Design: relying on AI feedback from LLMs (e.g., eureka).

Ma, Yecheng Jason, et al. "Eureka: Human-Level Reward Design via Coding Large Language Models." ICRL 2024.
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https://eureka-research.github.io/


Challenge 1: Designing the Reward Function

• Automated Rewards Design: current LLM solver has several significant limitations.
• Complex environments. Task contexts include multiple objects, complicated layouts,

and various relations among objects.
• Multi-modal inputs. Robotic observations include 3d Cloud, RGB images, tactile,

and force-torque signals (or other proprioception signals).
• LLM issues, Standard LLMs may lack proficiency in designing reward models for

robotic tasks.
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Challenge 1: Designing the Reward Function

Handling Multi-Modal Contexts with Hierarchical Reward Design:

• Utilize low-speed VLM (e.g., GPT 4o) to comprehend the context and initialize the

reward function.

• Utilize high-speed LLM (e.g., LLM) to refine the reward functions via evolutionary

computation.

• Iterative update the reward function until solving the task at high efficiency

(In-context learning).
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Challenge 1: Designing the Reward Function

Zhao, Xufeng, Cornelius Weber, and Stefan Wermter. "Agentic Skill Discovery." arXiv preprint arXiv:2405.15019 (2024).
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Challenge 1: Designing the Reward Function

Fine-tuning LLM for for more reliable Reward Design:

• The embodied AI environment can label the reward function with feedback

(success, speed, and safety).

• Fine-tuning an open-source LLM (Llama 3) for designing the reward functions with

the feedback via RLHF.
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Challenge 2: Scaling to Multiple Tasks

Scaling the RL solver to multiple tasks (typically thousands of tasks) is challenging.

• Maintain an independent RL solver for each task.
• Computational Intractable. Consuming too much time and computing power.

• Train a RL Solver (Meta RL) for all the tasks:
• Significant Diversity. A task typically involves different skills and objects, which are

difficult to master with only one agent.
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Challenge 2: Scaling to Multiple Tasks
• Iterate between generalist and specialist policies.

Wan, Weikang, et al. "Unidexgrasp++: Improving dexterous grasping policy learning via geometry-aware curriculum and iterative

generalist-specialist learning." CVPR 2023.
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Challenge 2: Scaling to Multiple Tasks

The current iterative generalist-specialist learning has lots of space for improvement

• Sharing Which Information: What types of information can be shared among

agents? Is it possible to create an information bottleneck to control the sharing of

representations?

• Sharing With Which Agents: How can we determine which agents should share

information? Can we develop an efficient mechanism to identify the appropriate

targets for information sharing?
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Challenge 3: Aligning to Expert Preference

The learned skills must be consistent with human preference.
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Challenge 3: Aligning to Expert Preference
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Skill Distillation into a VLA
Distill the skills into a Vision Language Agent (VLA) to learn generalist policies for

robotic control.

Kim, Moo Jin, et al. "OpenVLA: An Open-Source Vision-Language-Action Model." arXiv preprint (2024).
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Skill Distillation into a VLA
Phase 1: Manipulation Tasks.

• Robot Types : Dexterous hands and robot arms.

• Task: Sim2Real deployment, adapting RL policy to multi-objects manipulation.

• Platform: DexSim simulator and real robots.

Inspire Dexterous Hand Rokae Robot Arm DexSim Simulator
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Skill Distillation into a VLA
Phase 2: Mobile Manipulation Tasks

• Robot Types: Humanoid robot.
• Task: Sim2Real deployment, adapting RL policy to locomotion and manipulation.
• Platform: DexSim simulator and real robots.

Inspire Dexterous Hand Unitree H1 HumanoidBench Simulator
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Conclusion
A skill factory sunning in simulation.

• Input: Computing resource, energy and power.

• Output: The set of robot skills and an evolving robotic agent (VLA).
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Conclusion

Advantages:

• Collecting numerous data at lower cost and higher efficiency.

• Automating the skill data generation process without relying on humans.

Disadvantages:

• The generated data may be ineffective if the Sim-to-Real Gap is significant.

• The data generation process may consume huge computing resources.
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Recent Advancement on Humanoid Agent

HumanPlus: Learning a humanoid to dance and work like humans.
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https://humanoid-ai.github.io/


Recent Advancement on Humanoid Agent

HumanPlus: Learning a humanoid to dance and work like humans.
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Question and Answering (Q&A)
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