
Lecture 20 - Interconnections between policy and value

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

Recap: REINFORCE Algorithm

To compute the gradient ∇θJ(θ) algorithmically, we can sample N trajectories

following the policy π and use the empirical mean to estimate the gradient

∇θJ(θ) = Eπ [Q
π(s,a)∇θ logπθ (a | s)] .

• For Qπ(s,a), we can use return Gt =
∑

γtrt to estimate.

• For ∇θ logπθ (a | s), it depends on the form of the policy.

2 / 7

Recap: REINFORCE Algorithm

2 / 7

Actor Critic methods

Motivation of Actor-critic.

• Most of the variance is from the Monte-Carlo estimation Gt of Q(st ,at).

• We can estimate parametrized Q(s,a) and bootstrap the estimation into the policy

gradient. This results in a biased estimator but with a much lower variance.

• One way to estimate the value function is the temporal-difference method, With

this bootstrap, the method is called actor-critic.

3 / 7

Actor Critic methods
An illustrative example of the idea of actor-critic.

3 / 7

Actor Critic methods

Actor-critic methods consist of two models.

• The critic updates the value function parameters w .

• The actor updates the policy parameters θ in the direction suggested by the critic.

Note that although the REINFORCE with baseline method learns both a policy and a

state value function, we do not consider it to be an actor-critic method because its

state value function is used only as a baseline instead of a critic.

3 / 7

Actor Critic methods

One-step actor-critic methods 1) replace the full return of REINFORCE with the

one-step return and 2) use a learned state value function as the baseline, as

θt+1 = θt +αθ(Gt − V̂ (st ,w))∇ logπθ (at | st)

= θt +αθ(rt + γV̂ (st+1,w)− V̂ (st ,w))∇ logπθ (at | st) .

This algorithm then takes two inputs: a differentiable policy parametrized by πθ (a | s)
and a differentiable state value function parametrized by V̂ (s,w).

3 / 7

Actor Critic methods

3 / 7

Actor Critic methods

Some advancement on the AC algorithm.

• Advantages Actor Critic (A2C) replace rt + γV̂ (st+1,w) with Q(s,a,w ′), so that

A(s,a) = Q(s,a,w ′) −V̂ (st ,w).

• Asynchronous Advantages Actor Critic (A3C) asynchronously executes multiple

agents in parallel, thereby de-correlating the agents’s data and stabilizing training.

3 / 7

Actor Critic methods
The structure of Asynchronous Advantages Actor-Critic (A3C)

3 / 7

Soft Actor-Critic

Motivation. The combination of off-policy learning and high-dimensional, nonlinear

function approximation with neural networks presents a major challenge for stability and

convergence.

4 / 7

Soft Actor-Critic

Soft Actor-Critic is an off-policy maximum entropy actor-critic algorithm.

• This algorithm extends readily to very complex, high-dimensional tasks, where

off-policy methods typically struggle to obtain good results.

• SAC also avoids the complexity and potential instability associated with

approximate inference in prior off-policy maximum entropy algorithms.

4 / 7

Soft Policy Iteration

Soft Policy Iteration considers a maximum entropy objective based on Standard RL,

which favors stochastic policies by augmenting the maximizing the expected sum of

rewards objective with the expected entropy of the policy over ρπ(st), as

J(π) =
T∑
t=0

Est ,at ,t≥0[r(st ,at)+αH(π(· | st))] . (1)

The temperature parameter α determines the relative importance of the entropy term

against the reward, and thus controls the stochasticity of the optimal policy (encourage

exploration). 1

1For the rest of this lecture notes, we will omit writing α.
5 / 7

Soft Policy Iteration

We will begin by deriving soft policy iteration based on our objective. For a fixed policy,

the soft Q-value can be computed iteratively, starting from any function Q : S ×A→R
and repeatedly applying a modified Bellman backup operator Bπ given by

BπQ(st ,at) = r(st ,at)+ γEst+1∼P[V (st+1)] , (1)

V (st) = Eat∼π [Q(st ,at)− logπ(at | st)] (2)

is the soft state value function. We can obtain the soft value function for any policy π

by repeatedly applying Bπ as formalized below.

5 / 7

Soft Policy Iteration

Lemma (Soft policy evaluation)

Consider the soft Bellman backup operator Bπ and a mapping Q0 : S ×A→ R with

|A|< ∞, and define Qk+1 = BπQk . Then the sequence Qk will converge to the soft

Q-value of π as k → ∞.

Proof.
Define the entropy augmented reward as rπ(st ,at) = r(st ,at)+Est+1∼P [H (π(· | P))]
and rewrite the update rule as:Q(st ,at)← rπ(st ,at)+ γEst+1∼P,at+1∼π [Q(st+1,at+1)]

and apply the standard convergence results for policy evaluation.

5 / 7

Soft Policy Iteration

In the policy improvement step, the policy update results in an improved policy in terms

of its soft value. For each state, we update the policy according to

πnew = argmin
π ′∈Π

dKL(π
′(· | st)∥

exp(Qπold(st , ·))
Zπold(st)

) . (1)

The partition function Zπold(st) normalizes the distribution.

Lemma (Soft policy improvement)

Let πold ∈ Π and let πnew be the optimum of the minimization problem defined . Then,

Qπnew(st ,at)≥ Qπold(st ,at) for all (st ,at) ∈ S ×A when |A|< ∞.

5 / 7

Soft Policy Iteration

The full soft policy iteration algorithm alternates between the soft policy evaluation and

the soft policy improvement steps, and it will provably converge to the optimal

maximum entropy policy among the policies in Π, as shown in the below lemma.

Lemma (Soft policy iteration)

Repeated application of soft policy evaluation and soft policy improvement from any

π ∈ Π converges to a policy π∗ such that Qπ∗(st ,at)≥ Qπ(st ,at) for all π ∈ Π and

(st ,at) ∈ S ×A, assuming that |A|< ∞.

5 / 7

Soft Policy Iteration

Although this algorithm will provably find the optimal solution, we can perform it in its

exact form only in the tabular case. Therefore, we will next approximate the algorithm

for continuous domains, where we need to rely on a function approximator to represent

the Q-values, and running the two steps until convergence would be computationally

too expensive.

5 / 7

SAC Algorithm for Deep RL

We will consider a parameterized state value function Vψ(st), soft Q-function

Qθ (st ,at), and a tractable policy πφ (at | st).
Update Vψ(s). The soft value function is trained to minimize the squared residual error

JV (ψ) = Est∼D

[
1
2
(
Vψ(st)−Eat∼πφ

[Qθ (st ,at)− logπφ (at | st)]
)2
]
, (1)

where D is a replay buffer. The gradient can be estimated with an unbiased estimator

∇̂ψJV (ψ) = ∇ψVψ(st)
(
Vψ(st)−Qθ (st ,at)+ logπφ (at | st)

)
, (2)

where the actions are sampled according to the current policy instead of the replay

buffer and Qθ (st ,at) can be replaced by Monte-Carlo sample.

6 / 7

SAC Algorithm for Deep RL

Update Qθ (s,a). The soft Q-function parameters can be trained to minimize:

JQ(θ) = E(st ,at)∼D

[
1
2

(
Qθ (st ,at)− Q̂(st ,at)

)2
]
,Q̂(st ,at) = r(st ,at)+ γEst+1∼P[Vψ̄(st+1)] ,

which again can be optimized with stochastic gradients

∇̂θJQ(θ) = ∇θQθ (at ,st)
(
Qθ (st ,at)− r(st ,at)− γVψ̄(st+1)

)
.

The update makes use of a target value network Vψ̄ , where ψ̄ can be 1) an

exponentially moving average of the value network weights or 2) updated to match the

current value function weights periodically.

6 / 7

SAC Algorithm for Deep RL

Update πφ (a | s). Finally, the policy parameters can be learned by directly minimizing

the expected KL-divergence:

Jπ(φ) = Est∼D

[
dKL(πφ (· | st)∥

exp(Qθ (st , ·))
Zθ (st)

)

]
.

for minimizing Jπ , we reparameterize the policy using a neural network transformation

at = fφ (εt ;st) ,

where εt is an input noise vector, sampled from some fixed distribution, such as a

spherical Gaussian.

6 / 7

SAC Algorithm for Deep RL

We can now rewrite the objective as

Jπ(φ) = Est∼D,εt∼N
[
logπφ (fφ (εt ;st) | st)−Qθ (st , fφ (εt ;st))

]
,

where πφ is defined implicitly in terms of fφ . We can approximate the gradient with

̂∇φJπ(φ) = ∇φ logπφ (at | st)+(∇at logπφ (at | st)−∇atQ(st ,at))∇φ fφ (εt ;st) ,

where at is evaluated at fφ (εt ;st). This unbiased gradient estimator extends the DDPG

style policy gradients to any tractable stochastic policy.

6 / 7

SAC Algorithm for Deep RL

6 / 7

SAC Algorithm for Deep RL

6 / 7

SAC Algorithm for Deep RL

6 / 7

SAC Algorithm for Deep RL

6 / 7

Question and Answering (Q&A)

7 / 7

