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Recap: Q-learning in discrete state space

Recall that Q-learning is an off-policy method for TD-style control. Despite that it is
off-policy, we do not need to rely on importance sampling. Instead, we can maintain the

Q estimates and bootstrap the value of the best future action.
Q(St, at) $— Q(St, at) + O (rt + '}/ma/X Q(5t+]_, a/) — Q(St, at)> .
a

As we take a maximum over the actions at the next state, this action is not necessarily
the same as the one we would derive from the current policy. Therefore, Q-learning is

considered an off-policy algorithm.
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Recap: Q-learning in discrete state space

Algorithm 5: Q-learning with e-greedy exploration

Input: €, a,v
Initialize Q(s,a) for all s € S,a € A arbitrarily except Q(terminal,-) =0
T + e-greedy policy with respect to Q)

for each episode do
t+1

Set s; as the starting state

while until episode terminates do
Sample action a; from policy m(s;)
Take action a; and observe reward r; and next state s34
Q(s¢,ar) — Q(s¢,a¢) + a(ry + ymaxy Q(s41,a") — Q(s¢,a))
7 + e-greedy policy with respect to @
t—t+1

return Q,m
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Value-based deep reinforcement learning

In this lecture, we introduce three popular value-based deep reinforcement learning (RL)

algorithms: Deep Q-network (DQN), Double DQN and Dueling DQN.

® They can learn successful policies directly from high-dimensional inputs, (e.g.

pre-processed pixels from video games) by using end-to-end reinforcement learning.

® They achieved a level of performance that is comparable to a professional human

games tester across a set of 49 names on Atari 2600.

e Convolutional neural networks (ConvNets) are used in these architectures for

feature extraction from pixel inputs, as an example of feature representations.
B) ==+ x5k
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Generalization: Deep Q-network (DQN)

DQN architecture: neural networks are used as function approximations.
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Generalization: Deep Q-network (DQN)

DQN architecture: neural networks are used as function approximations.

® The network takes pre-processed pixel images from the Atari game environment as

inputs. The pre-processed pixel input is a summary of the game state s.

® The network outputs a vector containing Q-values for each valid action. The single

output unit represents the Q function for a single action a.
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Generalization: Deep Q-network (DQN)

The raw Atari 2600 frames are of size (210 x 160 x 3). The pre-processing step adopted

reduces the input dimensionality and deals with some artifacts of the game emulator.

e Single frame encoding: To encode a single frame, the maximum value for each

pixel color value over the frame being encoded and the previous frame is returned.

® Dimensionality reduction: Extract the Y channel, also known as luminance, from
the encoded RGB frame and rescale it to (84 x 84 x 1).

The above pre-processing is applied to the 4 most recent raw RGB frames. Stacking

together the recent frames as the game state can transform the environment into a

world closer to Markovian. I
N
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Generalization: Deep Q-network (DQN)

Training algorithm for DQN: The Q-network is learned by minimizing the mean squared

error
J(W) = ]E(st,at-,rz,5t+1)[()/tDQN - O(St, ataW))2] ,

where ytDQN is the one-step ahead learning target

QN

D A —_
Ye N =re+ymax Q(sey1,a, W),
a

where w™ represents the parameters of the target network, and the parameters w of the

online network are updated by sampling gradients from minibatches of past transition
B) ==+ x5k
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Generalization: Deep Q-network (DQN)

Algorithm 2: Deep Q-learning

Initialize replay memory D with a fixed capacity
Initialize action value function @ with random weights w
Initialize target action value function @ with weights w~ = w

for episode k=1,...,K do
Observe initial frame z; and pre-process frame to get state s;

for time stept =1,...,T do

. random action with probability e
Select action a; = N )
arg max, Q(s;,a,w) otherwise

Execute action a; in emulator and observe reward r; and image ;4
pre-process si, Zy41 to get s;41, and store transition (s, a¢, 7, 8441) in D
Sample uniformly a random minibatch of N transitions
{(sjaj. 75, sj41)}je(n) from D
Set y; = rj if eplsode ends at step j + 1, otherwise set
y; =71 +ymaxy Q(sji1,a, W)
Perform a stochastlc gradlent descent step on L)
=~ EJ =1 yJ (SJ‘,G.J’,W))Q with respect to w g Kong, Shenzhen

Every C steps reset w~ =w
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Experience Replay

To use large nonlinear function approximators and scale online Q-learning, DQN uses:

1. Experience Replay.:

® The agent's experiences (the transitions) at each time step e; = (st, at, ¢, St+1) is
stored in a fixed-sized dataset D; = {e1,...,e:}, known as the replay buffer. The

replay buffer is used to store the most recent k = 1 million experiences.

® The Q-network is updated by SGD with sampled gradients from minibatch data.
Each transition sample in the minibatch is sampled uniformly at random from the

pool of stored experiences, (s, a,r,s’) ~ Uniform(D).

FEF XK FEEID
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Experience Replay

lllustration of replay buffer. The transition (s, a,r,s’) is uniformly sampled from the

replay buffer for updating Q-network.

S1,4d1,12,52

52,42, 3,53

53,43, 14,54

St,dt, lNt+1, St+1
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Experience Replay

Advantages over standard online Q-learning.

e Greater data efficiency: Each step of experience can be potentially used for many

updates, which improves data efficiency.

® Remove sample correlations: Randomizing the transition experiences reduces the
correlations between consecutive samples and therefore reduces the variance of

updates and stabilizes the learning.

® Avoiding oscillations or divergence: The behavior distribution is averaged over
many of its previous states and transitions, smoothing out learning and avoiding

oscillations or divergence in the parameters. &P % k£ GEID
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Experience Replay

Limitation of experience replay: The replay buffer does not differentiate important
transitions or informative transitions and it always overwrites with the recent transitions
due to fixed buffer size. Similarly, the uniform sampling from the buffer gives equal
importance to all stored experiences. A more sophisticated replay strategy, Prioritized
Replay, replays important transitions more frequently, and therefore the agent learns

more efficiently.
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Target network

To use large nonlinear function approximators and scale online Q-learning, DQN uses:

2. Target network.:

e To further improve the stability of learning and deal with the non-stationary
learning targets, a separate target network is used for generating the targets y; in

the Q-learning update.

® More specifically, for every C update steps the target network @(s,a,w*) is

updated by copying the parameters’ values (w~ = w) from the online network

n

Q(s,a,w), and the target network remains unchanged and generates targets y; for

EH
cIrren

the following C updates.
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Training details of DQN

¢ In the original DQN paper, a different network (or agent) was trained on each

game with the same architecture, learning algorithm and hyperparameters.

® The authors clipped all positive rewards from the game environment at +1 and all
negative rewards at —1, which makes it possible to use the same learning rate

across all different games.

® For games where there is a life counter (e.g. Breakout), the emulator also returns
the number of lives left in the game, which is then used to mark the end of an
episode during training by explicitly setting future rewards to zeros.
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Training details of DQN

® They also used a simple frame-skipping technique (known as action repeat): the
agent selects actions on every 4-th frame instead of every frame, and its last action
is repeated on skipped frames. This reduces the frequency of decisions without
impacting the performance too much and enables the agent to play roughly 4

times more games during training (less sample complexity, less reward delay).
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Performance of Deep Q-network (DDQN)

LETTER

Human-1level control through deep reinforcement
learning

Volodymyr Mnih'*, Koray Kavukcuoglul*, David Silver™, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller!, Andreas K. F idje]andl, Georg Ostrovski', Stig Petersen', Charles Beattie!, Amir Sadik', loannis Antonogloul,
Helen K‘mg‘l, Dharshan Kumaran', Daan Wierstra', Shane Legg1 & Demis Hassabis'

doi;10.1038/nature14236

Q) DeepMind
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Performance of Deep Q-network (DDQN)

Atari 2600 games: Space Invaders Atari 2600 games: Seaquest

[EA]
b 3
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Performance of Deep Q-network (DDQN)

Average score for Space Invaders (Left)/ Seaquest (Right).
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Performance of Deep Q-network (DDQN)

Average predicted action-value for Space Invaders (Left)/ Seaquest (Right).
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Performance of Deep Q-network (DDQN)

Video Clips about Real Performance:
DQN in Space Invaders: Link DQ@N in Seaquest: Link

DEYGEN -
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https://www.youtube.com/watch?v=W2CAghUiofY&ab_channel=GoogleDeepMind
https://www.youtube.com/watch?v=E5fh_ZfxGok&ab_channel=MichaelLee

Performance of Deep Q-network (DDQN)

In summer, Deep Q-network agent can:
e receive only the pixels and the game score as inputs.
® surpass the performance of all previous algorithms.

® achieve a level comparable to that of a professional human games tester across a

set of 49 games.
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Reducing bias: Double deep Q-network (DDQN)

Limitation of DQN:

® The max operator in DQN uses the same network values both to select and to

evaluate an action.

® This setting makes it more likely to select overestimated values, resulting in

overoptimistic target value estimates.

To prevent overestimation and reduce bias, we can decouple the action selection from

action evaluation.
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Reducing bias: Double deep Q-network (DDQN)

In double Q-learning, two action value functions are maintained. For computing targets,

one function is used to select the greedy action and the other to evaluate its value

ye P = e+ yQ(ser1,arg max Q(se1. 8, w),w).

a

Alternatively, in double DQN, the greedy action is generated according to the online
network with parameters w, but its value is estimated by the target network with

parameters w—. The computing of the target in DQN can be updated as:

ytDDQN = re +YQ(st41,argmax Q(se41,a,w),w™).
a B) ==+ x5k

ans The Chinese University of Hong Kong, Shenzhen

Y
cIrren

The update to the target network stays unchanged from DQN.

3

9/13



Reducing bias: Double deep Q-network (DDQN)

Published on AAAI 2016.

Deep Reinforcement Learning with Double Q-learning

Hado van Hasselt and Arthur Guez and David Silver
Google DeepMind
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Value estimates

0

Reducing bias: Double deep Q-network (DDQN)
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Value estimates

Reducing bias: Double deep Q-network (DDQN)
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Decoupling value and advantage: Dueling network

Dueling network architecture. Recall the advantage function, which relates the state

value and the action value functions (assume following the same policy 7)
A'(s,a) = Q"(s,a) — V*(s).

Recall V*(s) = E, z(5[Q"(s,a)], thus we have E,_;(5)[A"(s,a)] = 0. Intuitively, the
advantage function subtracts the value of the state from the Q-function to get a

relative measure of the importance of each action.

FEF XK FEEID
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Decoupling value and advantage: Dueling network

Dueling network architecture. The dueling network has two streams to separately

estimate the state value V/(s) and the advantage A(s,a) for each action.

DQN

Q(s,al)
Q(s,a2)

Dueling DQN
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Decoupling value and advantage: Dueling network

Theis two-stream design is based on the following observations or intuitions:

e Enhanced Value Estimation: It separates state value and action advantage,

enabling better differentiation between valuable states and the impact of actions.

® Improved Stability: By focusing on state values, it reduces noise from irrelevant

actions, leading to more stable learning.

e Efficient Exploration: It helps prioritize which states to explore further,

improving policy evaluation.

e Faster Convergence: The architecture allows for quicker adaptation and learning

FEF XK FEEID

in complex environments. FE;;?
e The Chinese University of Hong Kong, Shenzhen

EH
cIrren

3

10/13



Q-value estimation in the dueling DQN
Q-value estimation. From the definition of the advantage function, we have
Q"(s,a) = A%(s,a) + V™(s), and E,_»(5)[A%(s,a)] =0
Furthermore, for a deterministic policy (commonly used in value-based deep RL)
a" = argmax Q(s,a)
aeA

it follows that Q(s,a*) = V(s) and hence A(s,a*) = 0. The greedily selected action has

zero advantage in this case. £ %P LK E GRS
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Q-value estimation in the dueling DQN

Now consider the dueling network architecture for function approximation:
° V(s,w,wv): the scalar output value function from one stream of the fully
connected layers.
® A(s,a,w,wp): the vector output advantage function from the other stream.
e w:the shared parameters in the convolutional layers.
® wy and wa: the parameters in the two different streams of fully connected layers.

The aggregating module is @(s,a,w,wA,WV) = V(s,w,wv) + A(s,a,w,wa).
B #2vx k%09
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Q-value estimation in the dueling DQN

Given Q, we cannot recover V and A uniquely. To make the Q-function identifiable, we
can force the advantage function to have zero estimate at the chosen action:

Q(S, avaWA)WV) = V(S?W’WV) + (A(S, avwva) - g,]eaj\(A(s’ a,7W7WA)> . (1)
Since a* = argmaxy 4 Q(s,a,w,wa,wy) = argmax 4 A(s,a’,w,wa), and thus
@(s,a*,w,wA,wV) = V(s,w,wv). Thus, the stream V provides an estimate of the
value function, and the other stream A generates advantage estimates.

EH
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Q-value estimation in the dueling DQN

To make the Q-function identifiable, an alternative aggregating module replaces the

max operator with a mean operator

Although this design in some sense loses the original semantics of V and A, the author

argued that it improves the stability of learning.
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Q-value estimation in the dueling DQN

Published on International conference on machine learning (ICML) 2016.

Dueling Network Architectures for Deep Reinforcement Learning

Ziyu Wang ZIYU @ GOOGLE.COM
Tom Schaul SCHAUL @ GOOGLE.COM
Matteo Hessel MTTHSS @ GOOGLE.COM
Hado van Hasselt HADO@GOOGLE.COM
Marc Lanctot LANCTOT @ GOOGLE.COM
Nando de Freitas NANDODEFREITAS @ GMAIL.COM

Google DeepMind, London, UK
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Distributional Q-learning
An alternative approach to mitigate the overestimation effect is to write both the
Q-function and the target into distributions in the Bellman optimality equation. Recall

that the Q-value is defined as the expectation of the stochastic return (denote as Z% to

be distinguished from G)

def
Q" (s,a) = Ex[Z"(s,a)] = Ex[Gt|s: = s,a: = a] = By Zykrt+k+1|st =s,ar=a
k=0
In the distributional setting, we can take away the expectation and consider the full

distribution of the random variable Z*. The distributional Bellman operator 77 for Z is

FEF XK FEEID
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Distributional Q-learning

Distributional DQN has several advantages over standard DQN:

® Rich Representation: It models the distribution of returns, providing a more

detailed understanding of uncertainty and variability in rewards.

® Improved Exploration: By capturing the spread of possible outcomes, it can

better inform exploration strategies.

e Enhanced Learning: The richer feedback from distributional information can lead

to more efficient and stable learning.

® Robustness to Non-Stationarity: It can better adapt to changing environments

BB &% ¢ x X £ GED
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Distributional Q-learning

We are interested in the TD error between random variable Z” and 7*Z". To measure

the distance between random variables, we adopt the p-Wasserstein metric dp.
Definition
Given two random variables U, V with their respective cumulative density functions Fy,

Fyv, the Wasserstein metric is defined as

v = ( [ 1750 Fvl(u)v’du)l/p .

FEF XK FEEID
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Distributional Q-learning
It is shown that 77" is a contraction operator under the Wasserstein metric.

Lemma

T":Z — Z is a y-contraction in d.

Note that however the contraction property of 7" does not hold under KL divergence
or total variation.

In general, optimality operators who have a fixed point Z* = T Z* does not guarantee
the convergence of the iteration Zy.1 < T Zx. When the optimal policy is unique, this
contraction operator guarantees a convergence. Despite that this assumption might not
gorithm has been

XS JCET]
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Distributional Q-learning

Lemma
If the optimal policy is unique, then the iteration Zj, 1 < T Z) converges to Z* .
In its implementations, Z will be represented by a histogram. The update of the

distributional Q-learning on the histogram is then
Z(st,at) < (1—ar)Z(se,at) + o Nc(Re +yYZ(st 41, T2 (Se41))) s

where [N¢ is the projection operator to assign the probability density into the histogram

bins and o is the step size. PR P
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Distributional Q-learning

Published on AAAI 2018.

Distributional Reinforcement Learning with Quantile Regression

‘Will Dabney Mark Rowland Marc G. Bellemare Rémi Munos
DeepMind University of Cambridge* Google Brain DeepMind
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Human Normalized Score
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Question and Answering (Q&A)
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