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Value Function Approximation

Motivations:

® So far we represented the value function by a lookup table where each state has an
entry, V(s), or each state-action pair has an entry, Q(s,a).
® However, this approach might not generalize well to problems with large state and

action spaces. A popular solution is via value function approximation (VFA)

Vi(s)~ V(s,w) or Q%(s,a)~ Q(s,a,w).

EH
cIrren

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

3

2/9



Value Function Approximation

VE(s)~ V(s,w) or Q%(s,a)~ Q(s,a,w).
In the approximation, w is usually referred to as the parameter or weights of our
function approximator. Some choices for function approximators are listed below.
® |inear combinations of features
® Neural networks

® Decision trees

Nearest neighbors

. . B LK EGERID
Fourier and wavelet basis The Chinese University of Hong Kong, Shenzhen

2/9



Linear feature representations

In linear function representations, we use a feature vector to represent a state

x(s) = (xa(s), xa(s), - xa(s)) T

where d is the dimensionality of the feature space. We then approximate our value

functions using a linear combination of features as

A~

d
V(s,w) =x(s)Tw= ZXJ(S)WJ.
j=1
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Linear feature representations

The error of the approximation is defined on the measure space of the occupancy

measure, which denotes the cumulative probability that a state is visited under &

T .t _
pﬂ(s): lim Zt:OyP(st_s ’ ﬂ:)
T—o0 ZZ-:O }/t

The quadratic objective function (also known as the loss function) of the approximation

error is then defined as

Jw) = Bovpr(s) | (V7(5) = V(s,w))?]
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Gradient Descent

A common technique to minimize the above objective

function is gradient descent.
e Start at some particular spot xg, corresponding
to some initial value of our parameter w.

e Evaluate the gradient at xg, which is the

direction of the steepest increase of objective.

e Take a step along the negative direction of the

gradient vector and arrive at xj.

® This process is repeated until convergence.
B ==+ xx® N
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Gradient Descent

Mathematically, this can be summarized as

aJ aJ aJ
Vwd(w) = (W), (w) ey (w) , compute the gradient
ow; = dwo owp,
1
Aw = —§OCVWJ(W), compute an update step using gradient descent
W w+ Aw, take a step towards the local minimum

where « is the learning rate.
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Gradient Descent

Stochastic Gradient Descent

® |n practice, gradient descent is not a sample-efficient optimizer. so we use

stochastic gradient descent (SGD).

® |n minibatch SGD, we sample a minibatch of past experiences, compute our
objective function on that minibatch, and update our parameters using gradient

descent on the minibatch.
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Monte-Carlo policy evaluation with linear VFA

Algorithm 1: Monte-Carlo policy evaluation with linear VFA

Initialize w =0, R(s) =0Vs, k=1
while {rue do
Sample k-th episode (S]C,l, Ak,1,Tk,1sSk2y -+« Sk,Hk) given m
fort=1,...,H; do
if first visit to s in episode k then
L Append Z;’;’“t T to R(s¢)
w — w + a(avg(R(sy)) — V(st, w))z(st)

Lk=k+1
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Monte-Carlo policy evaluation with linear VFA

This algorithm is a modification of first-visit Monte-Carlo policy evaluation, while we
replace our value function with our linear VFA. Recall that the mean squared error of a

linear VFA for a particular policy 7 relative to the true value is:

J(w) =D p(s)(VF(s) = VF(s,w)).
Lemma )
Monte-Carlo policy evaluation with linear VFA converges to the weights wpc with
minimum mean squared error.

Jwpc) = mv\ianp”(s)(V”(s) —V7(s,w))?.
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Temporal-difference methods with linear VFA

Recall that in the tabular setting, we approximate V7 via bootstrapping and sampling

and update V*(s) by
VE(s) < VE(s)+a(r+yV7(s") = V7(s)),

where r+yV7(s') represents our TD target. Using linear VFA, we replace V7 with V/*

and our update equation becomes

W w+o(r+ V(s ,w) — V(s,w))Vy V7 (s, W)
=w+a(r+yV*(s’,w)— V7(s,w))x(s).
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Temporal-difference methods with linear VFA

In value function approximation, although our target is a biased and approximated
estimate of the true value V*(s), linear TD(0) will still converge to some global

approximate optimum.

Lemma
TD(0) policy evaluation with VFA converges to the weights wp which is optimum up

to 1/(1—1y) of the minimum mean squared error.

1

o) < -y min 3P (5)(V7(S) - Vs m)
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Control using VFA

Use function approximators for action-value functions by @(s,a,w) ~ Q™(s,a). We may
then interleave policy evaluation, by approximating using Q(s,a,w), and policy
improvement, by e-greedy policy improvement. To be more concrete, we define our

objective function J(w) as
J(w) = Ex [(Q7(s,a) — &7 (s, a,w)ﬂ .

Similar to what we did earlier in policy evaluation, we may then use either gradient

descent or stochastic gradient descent to minimize the objective function.
B) ==+ x5k
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Control using VFA

For example, for a linear action value function approximator, this can be summarized as

x(s,a) = (x1(s,a),x2(s,a),...,xn(s,a)) ", action value features
O(s,a,w) = x(s,a) Tw, action value linear in features
J(w) =Ex [(Q7(s,2) — Q7(s,2,w))?] objective function
—%VWJ(W) =E, [(Q”(s, a)— Q"(s,a,w))Vy Q" (s, a,w)}
=E, {(Q”(s,a) - é”(s,a,w))x(s,a)} , compute the gradient
Aw = —%aVWJ(w)

AP XK FEID
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Control using VFA

For Monte Carlo methods, we substitute our target Q”(s,a) with a return G;.

Aw = oGy — Q(s,a,w))Vy Q(s, a,w).

For SARSA, we substitute our target with a TD target

Aw = a(r+yQ(s',a',w) — Q(s,a,w))V,, Q(s,a,w).

For Q-learning, we substitute our target with a maximum TD target

Aw = o(r+ ymax @(s’,a’,w) — Q(s,a,w))VWQ(s,a,w).
a/
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Neural networks

Motivations:

e Although linear VFAs often work well given the right set of features, it can also be

difficult to hand-craft such feature set.

® Neural networks provide a much richer function approximation class that is able to

directly go from states without requiring an explicit specification of features.

B8 %2+ x 2RI
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Neural networks

e Neural networks with a single hidden layer can
have the “universal approximation” property,
which has been demonstrated both empirically

and theoretically.

e Complicated functions can be approximated
p pp

with a hierarchical composition of multiple

hidden layers.
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Question and Answering (Q&A)
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