
Lecture 16 - Value Function Approximation

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html


Value Function Approximation

Motivations:

• So far we represented the value function by a lookup table where each state has an

entry, V (s), or each state-action pair has an entry, Q(s,a).

• However, this approach might not generalize well to problems with large state and

action spaces. A popular solution is via value function approximation (VFA)

V π(s)≈ V̂ (s,w) or Qπ(s,a)≈ Q̂(s,a,w) .

2 / 9



Value Function Approximation

V π(s)≈ V̂ (s,w) or Qπ(s,a)≈ Q̂(s,a,w) .

In the approximation, w is usually referred to as the parameter or weights of our

function approximator. Some choices for function approximators are listed below.

• Linear combinations of features

• Neural networks

• Decision trees

• Nearest neighbors

• Fourier and wavelet basis

2 / 9



Linear feature representations

In linear function representations, we use a feature vector to represent a state

x(s) = (x1(s),x2(s), . . . ,xd(s))
T ,

where d is the dimensionality of the feature space. We then approximate our value

functions using a linear combination of features as

V̂ (s,w) = x(s)Tw =
d∑

j=1

xj(s)wj .

3 / 9



Linear feature representations

The error of the approximation is defined on the measure space of the occupancy

measure, which denotes the cumulative probability that a state is visited under π

ρ
π(s) = lim

T→∞

∑T
t=0 γtP(st = s | π)∑T

t=0 γt
.

The quadratic objective function (also known as the loss function) of the approximation

error is then defined as

J(w) = Es∼ρπ(s)

[
(V π(s)− V̂ (s,w))2

]
.

3 / 9



Gradient Descent
A common technique to minimize the above objective

function is gradient descent.

• Start at some particular spot x0, corresponding

to some initial value of our parameter w.

• Evaluate the gradient at x0, which is the

direction of the steepest increase of objective.

• Take a step along the negative direction of the

gradient vector and arrive at x1.

• This process is repeated until convergence.

4 / 9



Gradient Descent

Mathematically, this can be summarized as

∇wJ(w) =
(

∂J(w)
∂w1

,
∂J(w)
∂w2

, . . . ,
∂J(w)
∂wn

)
, compute the gradient

∆w =−1
2

α∇wJ(w) , compute an update step using gradient descent

w← w+∆w , take a step towards the local minimum

where α is the learning rate.

4 / 9



Gradient Descent

Stochastic Gradient Descent

• In practice, gradient descent is not a sample-efficient optimizer. so we use

stochastic gradient descent (SGD).

• In minibatch SGD, we sample a minibatch of past experiences, compute our

objective function on that minibatch, and update our parameters using gradient

descent on the minibatch.

4 / 9



Monte-Carlo policy evaluation with linear VFA

5 / 9



Monte-Carlo policy evaluation with linear VFA
This algorithm is a modification of first-visit Monte-Carlo policy evaluation, while we

replace our value function with our linear VFA. Recall that the mean squared error of a

linear VFA for a particular policy π relative to the true value is:

J(w) =
∑
s

ρ
π(s)(V π(s)− V̂ π(s,w))2 .

Lemma
Monte-Carlo policy evaluation with linear VFA converges to the weights wMC with

minimum mean squared error.

J(wMC ) = min
w

∑
s

ρ
π(s)(V π(s)− V̂ π(s,w))2 .

5 / 9



Temporal-difference methods with linear VFA
Recall that in the tabular setting, we approximate V π via bootstrapping and sampling

and update V π(s) by

V π(s)← V π(s)+α(r + γV π(s ′)−V π(s)) ,

where r + γV π(s ′) represents our TD target. Using linear VFA, we replace V π with V̂ π

and our update equation becomes

w← w+α(r + γV̂ π(s ′,w)− V̂ π(s,w))∇wV̂
π(s,w)

= w+α(r + γV̂ π(s ′,w)− V̂ π(s,w))x(s) .

6 / 9



Temporal-difference methods with linear VFA

In value function approximation, although our target is a biased and approximated

estimate of the true value V π(s), linear TD(0) will still converge to some global

approximate optimum.

Lemma
TD(0) policy evaluation with VFA converges to the weights wTD which is optimum up

to 1/(1− γ) of the minimum mean squared error.

J(wTD)≤
1

1− γ
min
w

∑
s

ρ
π(s)(V π(s)− V̂ π(s,w))2 .

6 / 9



Control using VFA

Use function approximators for action-value functions by Q̂(s,a,w)≈Qπ(s,a). We may

then interleave policy evaluation, by approximating using Q̂(s,a,w), and policy

improvement, by ε-greedy policy improvement. To be more concrete, we define our

objective function J(w) as

J(w) = Eπ

[
(Qπ(s,a)− Q̂π(s,a,w))2

]
.

Similar to what we did earlier in policy evaluation, we may then use either gradient

descent or stochastic gradient descent to minimize the objective function.

7 / 9



Control using VFA
For example, for a linear action value function approximator, this can be summarized as

x(s,a) = (x1(s,a),x2(s,a), . . . ,xn(s,a))
T , action value features

Q̂(s,a,w) = x(s,a)Tw , action value linear in features

J(w) = Eπ

[
(Qπ(s,a)− Q̂π(s,a,w))2

]
, objective function

−1
2

∇wJ(w) = Eπ

[
(Qπ(s,a)− Q̂π(s,a,w))∇wQ̂

π(s,a,w)
]

= Eπ

[
(Qπ(s,a)− Q̂π(s,a,w))x(s,a)

]
, compute the gradient

∆w =−1
2

α∇wJ(w)

= α(Qπ(s,a)− Q̂π(s,a,w))x(s,a) , compute the update

w← w+∆w . take a step of gradient descent7 / 9



Control using VFA

For Monte Carlo methods, we substitute our target Qπ(s,a) with a return Gt .

∆w = α(Gt − Q̂(s,a,w))∇wQ̂(s,a,w) .

For SARSA, we substitute our target with a TD target

∆w = α(r + γQ̂(s ′,a′,w)− Q̂(s,a,w))∇wQ̂(s,a,w) .

For Q-learning, we substitute our target with a maximum TD target

∆w = α(r + γ max
a′

Q̂(s ′,a′,w)− Q̂(s,a,w))∇wQ̂(s,a,w) .

7 / 9



Neural networks

Motivations:

• Although linear VFAs often work well given the right set of features, it can also be

difficult to hand-craft such feature set.

• Neural networks provide a much richer function approximation class that is able to

directly go from states without requiring an explicit specification of features.

8 / 9



Neural networks

• Neural networks with a single hidden layer can

have the “universal approximation” property,

which has been demonstrated both empirically

and theoretically.

• Complicated functions can be approximated

with a hierarchical composition of multiple

hidden layers.

8 / 9



Question and Answering (Q&A)

9 / 9


