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DDA 4230 Resources

Join our Wechat discussion group. Check our course page.

Course Page Link (all the course relevant materials will be posted here):

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html
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Reinforcement Learning
A reinforcement learning agent interacts with its world and from that learns how to

maximize cumulative reward over time.

Reference: https://lilianweng.github.io/posts/2018-02-19-rl-overview/
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Reinforcement Learning

Reference: https://www.odinschool.com/

No teacher or knowledge of the

world model. Learn to act through

trial and error.

• E1: Agent + Fire -> -50.

• E2: Agent + Bucket + Fire -> -50.

• E3: Agent + Bucket + Water + fire

-> +50.

• E4: What will the agent do?
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Connection with other learning problems
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world model (e.g., environment).

Supervised Learning
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Connection with other learning problems

Reinforcement Learning

• No teacher or knowledge of the

world model (e.g., environment).

• Interact with the environment.

• Making sequential decisions.

• Learn a policy to maximize

cumulative rewards.

Supervised Learning

• Given a dataset, which consists of

examples and labels (knowledge).

• No interaction. Only an offline dataset.

• Making one-step predictions.

• Learn a predictor to maximizing

point-wise prediction accuracy.
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Connection with other learning problems

Reinforcement Learning

• No teacher or knowledge of the

world model (e.g., environment).

• Interact with the environment.

• Making sequential decisions.

• Learn a policy to maximize

cumulative rewards.

Unsupervised (Contrastive) Learning

• Given a dataset, which consists of only

examples (No labels).

• No interaction. Only an offline dataset.

• Learning latent structure of dataset.

• Learn the latent features for

classification or identification.
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Challenges in Reinforcement Learning

• How to balance exploration and exploitation?

• How to generalize its experience?

• How to model the delayed consequences of actions (look-ahead).
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Challenges in Reinforcement Learning
Exploration: Collect information as much as you can.
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Challenges in Reinforcement Learning
exploitation: Reach the destination as fast as you can.
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Challenges in Reinforcement Learning

Generalization: Learn whether some actions are good/bad in previously unseen states.
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Challenges in Reinforcement Learning

Look-ahead: estimate the delayed consequences of actions.
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Markov Decision Process (MDP)

Discrete-time Markov decision process (MDP), denoted as the tuple (S,A,T ,R,ρ0,γ).

• S the state space;

• A the action space. A can depend on the state s for s ∈ S;

• T : S ×A→∆(S) the environment transition probability function;

• R : S ×A→∆(R) the reward function;

• ρ0 ∈∆(S) the initial state distribution;

• γ ∈ [0,1] the discount factor.

Note that ∆(X ) denotes the set of all distributions over set X .
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Markov Decision Process (MDP)
Map the Reinforcement Learning (RL) environment to an MDP.

Application 1: Autonomous Driving.

Reference: https://www.topgear.com/
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Markov Decision Process (MDP)
Map the Reinforcement Learning (RL) environment to an MDP.

Application 2: Robot Control.

Reference: https://bostondynamics.com/
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Markov Decision Process (MDP)

Reference: https://en.wikipedia.org/wiki/Markov_decision_process

In an MDP, the choice of action at depends

only on the state st . A policy defines the

mapping from S to A.

• Stochastic policy: π : S →∆(A)

• Deterministic policy: at = π(st)
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Markov Decision Process (MDP)

Reference: https://en.wikipedia.org/wiki/Markov_decision_process

For t = 0,1, . . . , start with s0 ∼ ρ0.

• The agent observes the state st ;

• The agent’s policy chooses an action

at = π(st);

• The agent receives the reward

rt ∼R(st ,at);

• The environment transitions to a

subsequent state: st+1 ∼ T (st ,at).
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Markov Decision Process (MDP)

Reference: https://en.wikipedia.org/wiki/Markov_decision_process

Trajectory generation.

• This process generates the sequence

s0,a0, r0,s1, . . . , until when sT is a

terminal state, or indefinitely.

• The sequence up to time t is defined

as the trajectory indexed by t, as

τt = (s0,a0, r0,s1, . . . , rt).
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Important Variables in MDPs

• The return is defined as the discounted cumulative reward as a random variable.

Rt =
∞∑

t ′≥t

γ
t ′rt ′ .

• The expectation of the return is the objective to be maximized by the agent

J = Est ,at ,rt ,t≥0
[
R0] = Est ,at ,rt ,t≥0

[ ∞∑
t=0

γ
trt

]
and π = argmax

π

J

The expectation is subject to random variables (s0,a0, r0,s1, . . . , r∞) with a

complicate trajectory space (S ×A×R)∞. The optimization problem is not

characterisable (non-linear, non-convex, non-quadratic..) in general.
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Important Variables in MDPs

The stochasticity of a Markov chain given the MDP and the policy may come from four

components:

• Stochastic Markovian dynamics: PT (st+1|st ,at);

• Stochastic policies: π(at |st);

• Initial state distribution: ρ0(s0);

• Stochastic rewards: PR(rt |st ,at);
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Important Variables in MDPs

• The action value Q-function of a given policy π

Qπ(s,a) = Est ,at ,rt ,t≥0
[ ∞∑
t=0

γ
tr(st ,at) | s0 = s,a0 = a

]
which is the expected return of policy π at state s after taking action a.

• The state value function of a given policy π

V π(s) = Ea∼π(s) [Q
π(s,a)]

which is the expected return given the initial state only.
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Important Variables in MDPs

Example: Game Go • Rewards: r0 = 0, r2 = 0, ..., rT−1 = 0. If

win rT = 1 otherwise rT = 0.

• Discount: γ → 1.

• Qπ(s,a): winning probability of

making a move a under state s by

following policy π.

• V π(s): winning probability of at the

state s by following policy π.
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Important Variables in MDPs
• The advantage function of a given policy π can be defined as:

Aπ(s,a) = Qπ(s,a)−V π(s)

• Based on the value functions, define the temporal-difference error

δt = rt + γV (st+1)−V (st) .

Remark:

1. rt : rewards at t.

2. V (st+1): expected cumulative rewards at t+1, t+2, ....

3. V (st): expected rewards at t, t+1, t+2, ....

4. if π is optimal, E[δt ] = 0 This is incorrect.
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Important Variables in MDPs

The TD error in reinforcement learning will go to zero when the agent’s estimated value

of a state-action pair perfectly matches the actual return it receives.

• The TD error going to zero does not necessarily mean the agent has learned the

optimal policy. It just means the agent’s value estimates are accurate under the

current policy. The agent needs to explore more to find the optimal policy.

• This is an ideal case and may not occur in practical scenarios due to stochasticity

in the environment, the function approximation errors,the inherent complexity and

non-linearity of the problem
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The Bellman Equation

• State-value Bellman equation (named after Richard E. Bellman):

V (st) = E [rt + γV (st+1)] and V (sT ) = E [rT ] .

for non-terminal and terminal states, respectively.

• Action-value Bellman equation:

Q(st ,at) = E [rt + γQ(st+1,a) | a∼ π(a | st+1)] and Q(sT ,aT ) = E [rT ]

for non-terminal and terminal states, respectively.
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Stationarity of MDPs and Agents
Stationarity MDP

• Markovian dynamics of st+1 depends

only on st and at as st+1 ∼ PT (st ,at).

• The reward rt depends only on st and

at as rt ∼ PR(st ,at).

• A policy is stationary if the action

depends only on the state: at ∼ π(st).

Remark: If there is an optimal policy, there

is an optimal stationary policy if the process

has a non-fixed horizon.

Non-Stationarity MDP

• The transition dynamics depend on the

time t as st+1 ∼ PT ,t(st ,at).

• The reward depend on the time t as

rt ∼ PR,t(st ,at).

• A policy is non-stationary if the action

also depends on t: at ∼ πt(st).
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Stationarity of MDPs and Agents

• If the planning horizon H is finite, we should assume the policy is not stationary

since Qπ
t (s,a) = E[

∑H−t−1
ι=0 γ ι r(sι ,aι)],

If t ≤ t ′,Qπ
t (s,a)≥ Qπ

t ′(s,a)

Since the value function depends on time, the corresponding policy must depend

on time as well.

• If the planning horizon H is infinite, we commonly apply stationary policy.
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State and Action Spaces

Two common settings of the state space and the action space are:

• S ∈ Rn the n dimensional state space, A ∈ Rm the m dimensional action space;

• S ∈ [n] the size-n discrete state space, A ∈ [m] the size-m discrete action space.
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Discount of Rewards

The discount factor γ ∈ [0,1] balances the short-term and long-term rewards. When the

objective is discounted (γ < 1)

R0 = r0+ γr1+ γ
2r2+ . . . ,

Two extreme cases are γ = 0 and γ = 1, where the former corresponds to R0 = r0 as a

one-step MDP and the latter corresponds to R0 = r0+ r1+ r2+ . . . .
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Agents of RL

We can classify our agents in a number of ways:

Agent type Policy Value Function Model

Value-based Implicit ✓ ?

Policy-based ✓ ✗ ?

Actor-critic ✓ ✓ ?

Model-based ? ? ✓

Model-free ? ? ✗

• ✓ indicates that the agent

has the component.

• x indicates that it must not

have the component.

• ? indicates that the agent

may have that component.
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Agents of RL
Classification of different reinforcement learning agents.
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Classification of Markov structures

Markov structure

Do actions have influence over

the state transitions?

NO YES

Are the states

fully

observable?

YES
Markov process

(Markov chain)
Markov decision process

NO Hidden Markov model
Partially observable

Markov decision process
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Classification of Markov structures

Fully observable Markov decision process

• All the players are observable.
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Classification of Markov structures

Partially observable Markov decision process

• Only a partial number of the

players are observable.
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Question and Answering (Q&A)
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