
DDA4230 Reinforcement learning Hardness of bandits

Lecture 8

Lecturer: Guiliang Liu Scribe: Baoxiang Wang

1 Goal of this lecture

To understand the hardness of bandit problems and the fact that no algorithms guarantee
a regret better than O(log T ). delta
Suggested reading: Chapter 14, 15, 16, and 17 of Bandit algorithms;

2 Recap: ε-greedy, ETC, UCB, and TS

For ε-greedy, by choosing εt = min{1, Ct−1∆−2
minm} for some constant C, the regret satisfies

RT ≤ C ′
∑
i≥2

(
∆i +

∆i

∆2
min

logmax

{
e,

T∆2
min

m

})
, (1)

where C ′ is an absolute constant.
For ETC under 2-armed bandits, when T ≥ 4

√
2πe/∆2, by choosing k = ⌈ 2

∆2W (T
2∆4

32π )⌉,
the regret satisfies

RT ≤ O(
1

∆
log T∆2) + o(log T ) + ∆, (2)

where W (y) exp(W (y)) = y denotes the Lambert function.
For UCB, by setting δ = T−2, the regret satisfies

RT ≤ 3
m∑
i=1

∆i +
∑

i:∆i>0

16 log T

∆i
.

This result is followed by a series of improvements.
For TS (Bernoulli bandits) on Bernoulli bandits, the regret satisfies

RT ≤
∑

i:∆i>0

µ1 − µi

dKL(µ1 ∥ µi)
log T + o(log T ) ,

where dKL is the Kullback-Leibler divergence.

3 Bandit lower bounds

In this lecture, we desire to show some negative results, which describe the hardness of
bandit problems. We are particularly interested in the regret lower bound, that is, given
any fixed bandit algorithm, what is the regret that this algorithm will suffer on some bandit
instance. This gives us some ideas on the performance of our algorithms.

The high-level idea to show a regret lower bound is to select two bandit problem instances
in such a way that the following two conditions hold simultaneously:
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Figure 1: An antagonist who picks µ′ to produce a large regret.

1. Competition: An action, or, more generally, a sequence of actions that is good for one
bandit is not good for the other.

2. Similarity: The instances are ‘close’ enough that the policy interacting with either of
the two instances cannot statistically identify the true bandit with reasonable statis-
tical accuracy.

The two requirements are clearly conflicting. The first makes us want to choose instances
with means that are far from each other, while the second requirement makes us want to
choose them to be close to each other. The lower bound will follow by optimizing this
trade-off.

3.1 Analysis

When a probability measure P is absolutely continuous with respect to a probability measure
P′ and λ is a common dominating σ-finite measure for P and P′, denote

dKL(P ∥ P′) =

∫
P log

P
P′dλ

as the KL-divergence, which is also known as the relative entropy. For example, the KL-
divergence between N (0, σ) and N (c, σ) is c2

2σ2 . The discrepancy between probabilities of
the same event can be bounded by the discrepancy between the discrepancy between the
measures, among which we utilize the Bretagnolle–Huber inequality.

Lemma 1 (The Bretagnolle–Huber inequality) Let P,P′ be probability measures de-
fined on the same measurable space, then for an arbitrary event A,

P(A) + P′(¬A) ≥ 1

2
exp(−dKL(P ∥ P′)) .
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This inequality takes equality P(A)+P′(¬A) = 1
2 exp(−dKL(P ∥ P′)) when A = {x ≤ x′}

for x ∼ P, x′ ∼ P′ for some partial order ≤ on the space (for example, x ∈ R). When P and
P′ correspond to the probability space of the null hypothesis and the alternative hypothesis,
this agrees with the Neyman-Pearson lemma.

This lemma can be moderately improved by La Cam’s inequality. The lemma also trades
off with Pinsker’s inequality, which bounds the total variation distance

P(A)− P′(A) ≤
√

1

2
dKL(P ∥ P′) .

For small dKL(P ∥ P′) Pinsker’s inequality is tighter, but for a large KL divergence the
Bretagnolle–Huber inequality is more accurate.

Lemma 2 (Divergence decomposition) Consider two bandit instances with reward dis-
tribution P1, . . . ,Pm and P′

1, . . . ,P′
m. Given a fixed policy, denote the distribution of the

trajectories on these two instances as P and P′. Then,

dKL(P ∥ P′) =
∑
i∈[m]

EP [Ni,T ] dKL(Pi ∥ P′
i) .

Armed with the lemmas, we show that the regret of a bandit algorithm is at least
O(

√
mT ). This bound matches with the instance-independent regret upper bounds achieved

by several algorithms that we have discussed.

Theorem 3 Let T ≥ m − 1 ≥ 1. Then for any policy π, there exist µ1, . . . , µm, such that
with stochastic rewards N (µi, 1) for arm i, the regret of π on this bandit instance is at least

RT ≥ 1

16
√
e

√
(m− 1)T .

Proof: Let π be a fixed algorithm and write Pµ as the probability measure of over
the trajectories under executing π on unit-variance Gaussian arms with mean µ. Let ∆ =√

m−1
4T . Consider two bandit instances µ = (µ1, . . . , µm) and µ′ = (µ′

1, . . . , µ
′
m) where

µi =

{
∆, for i = 1 ,

0 otherwise ,

and

µ′
i =


∆, for i = 1 ,

2∆, for i = argminj ̸=1 EPµ [Nj,T ] ,

0 otherwise ,

where argmin breaks ties arbitrarily.
By the Bretagnolle-Huber inequality, for A = {N1,T ≤ T

2 },

Pµ(A) + Pµ′(¬A) ≥ 1

2
exp(−dKL(Pµ ∥ Pµ′)) .
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By the divergence decomposition,

dKL(Pµ ∥ Pµ′) =
∑
i∈[m]

EPµ [Ni,T ] dKL(Pi,µ ∥ Pi,µ′)

=
∑
i∈[m]

1{i = argminEPµ [Ni,T ]}EPµ [Ni,T ] dKL(Pi,µ ∥ Pi,µ′)

= minEPµ [Ni,T ] dKL(N (0, 1) ∥ N (2∆, 1))

≤ T

m− 1
· 2∆2 .

Then, the regret RT and R
′
T of π on µ and µ′ satisfy

RT +R
′
T ≥ Pµ(N1,T ≤ T

2
)
T

2
∆ + Pµ′(N1,T >

T

2
)
T

2
∆

=
T∆

2
(Pµ(A) + Pµ′(¬A))

≥ T∆

2

1

2
exp(− 2T∆2

m− 1
)

=
1

8
√
e

√
(m− 1)T .

This indicates that the arbitrary bandit algorithm π obtains a combined regret of at least
1

8
√
e

√
(m− 1)T in bandit instances µ and µ′, which shows that the regret is at least

1
16

√
e

√
(m− 1)T on at least one of the instances, as we desired. 2

When T < m− 1, a lower bound of (2m−T−1)
2m T can be shown.

3.2 Instance-dependent lower bounds

For fixed ∆i, i ∈ [m], the regret lower bound is O(log T ), which matches the instance-
dependent regret bound of several algorithms that we have discussed.

Theorem 4 For Gaussian bandit arms with unit variance, the regret of a bandit algorithm
is at least

RT ≥
∑
i∈[m]

2

∆i
log T + o(log T ) .

3.3 Alternative analyses

Our proof elaborates two Gaussian bandit instances to lower bound the regret. If we desire
regret lower bounds on some specific set of bandit problems, we can replace dKL(Pµ ∥ Pµ′)
with the KL-divergence on those distributions as well. We can also use variants of the
Bretagnolle-Huber inequality to bound P(A) + P′(¬A), when necessary.

A similar regret lower bound can be proved by Pinsker’s inequality. See Exercise 15.2
from the book for more details. For probabilistic lower bounds, we refer to Chapter 17 of
the book. We refer readers who are interested in research in lower bounds of bandits to
complete these exercises and investigate the lower bounds of other bandit settings.
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