
DDA4230 Reinforcement learning Thompson sampling

Lecture 7

Lecturer: Guiliang Liu Scribe: Baoxiang Wang, Jing Dong

1 Goal of this lecture

The goal is to understand algorithms based on Thompson sampling (TS), in terms of the
regret analysis and the underlying Bayesian perspective. For applications, students should
also gain some intuition about different algorithms’ advantages.
Suggested reading: Chapter 36 of Bandit algorithms; A tutorial on Thompson sampling
by Russo, van Roy, Kazerouni, Osband, and Wen; Analysis of Thompson Sampling for
the Multi-armed Bandit Problem by Agrawal and Goyal; Further optimal regret bounds for
Thompson sampling by Agrawal and Goyal; An information-theoretic analysis of Thompson
sampling by Russo and Van Roy;

2 Recap: ε-greedy, ETC, and UCB

For ε-greedy, by choosing εt = min{1, Ct−1∆−2
minm} for some constant C, the regret satisfies

RT ≤ C ′
∑
i≥2

(
∆i +

∆i

∆2
min

logmax

{
e,

T∆2
min

m

})
, (1)

where C ′ is an absolute constant.
For ETC under 2-armed bandits, when T ≥ 4

√
2πe/∆2, by choosing k = ⌈ 2

∆2W (T
2∆4

32π )⌉,
the regret satisfies

RT ≤ ∆+
2

∆
(log

T 2∆4

32π
− log log

T 2∆4

32π
+ log(1 +

1

e
) + 2) , (2)

where W (y) exp(W (y)) = y denotes the Lambert function.
For UCB, by setting δ = T−2, the regret satisfies

RT ≤ 3

m∑
i=1

∆i +
∑

i:∆i>0

16 log T

∆i
.

This result is followed by a series of improvements.

3 Recap: Bayesian statistics and Bernoulli-Beta conjugate

Recall that the reward r(i) of arm i follows some distribution. Assume that the reward
distributions of arms belong to the same family with respective parameters, which writes

r(i) ∼ p(x | θi) .
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Recall that when estimating θ, the posterior is

p(θ | x) = p(x | θ)p(θ)∫
θ′ p(x | θ′)p(θ′)dθ′

.

In Bayesian probability theory, if the posterior distributions p(θ | x) are in the same
probability distribution family as the prior probability distribution p(θ), the prior and
posterior are then called conjugate distributions, and the prior is called a conjugate prior
for the likelihood function p(x | θ). Some infamous conjugate priors are Gaussian-Gaussian,
Bernoulli-Beta, Poisson-Gamma, categorical-Dirichlet. Conjugate priors are convenient in
analyses.

The Bernoulli-Beta is important for Thompson sampling for Bernoulli bandits. Recall
that the Beta distribution Beta(α, β) with parameter θ = {α, β} follows the probability
density function of

p(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 ,

where Γ(z) =
∫∞
0 xz−1 exp(−x)dx, z ∈ C is the Gamma function. When p(θ) ∼ Beta(α0, β0)

and we observe x1, . . . , xα′+β′ ∼ x i.i.d. with α′ ones and β′ zeros, then

p(θ | x1, . . . , xα′+β′) =
p(x1, . . . , xα′+β′ | θ)p(θ)∫

θ′ p(x1, . . . , xα′+β′ | θ′)p(θ′)dθ′

=

(
α′+β′

α′

)
θα

′
(1− θ)β

′ Γ(α+β)
Γ(α)Γ(β)θ

α0−1(1− θ)β0−1∫
θ′ p(x1, . . . , xα′+β′ | θ′)p(θ′)dθ′

=

(
α′+β′

α′

) Γ(α+β)
Γ(α)Γ(β)∫

θ′ p(x1, . . . , xα′+β′ | θ′)p(θ′)dθ′
θα0+α′−1(1− θ)β0+α′−1

∼ Beta(α0 + α′, β0 + β′) .

This implies that if our current belief of µi = θ is Beta(α, β) and we observe a new data
x ∼ Ber(θ), then we update α += 1 or β += 1 when x = 1 or x = 0, respectively.

4 Thompson sampling algorithms

4.1 The first algorithm in bandits

We return to where it all began, in bandits, to the first algorithm proposed by Thompson
in 1933. The idea is a simple one. Before the game starts, the learner chooses a prior over
a set of possible bandit environments. In each round, the learner samples an environment
from the posterior and acts according to the optimal action in that environment.

The exploration in Thompson sampling comes from the randomization. If the posterior
is poorly concentrated, then the fluctuations in the samples are expected to be large and
the policy will likely explore. On the other hand, as more data is collected, the posterior
concentrates towards the true environment and the rate of exploration decreases. We discuss
finite-armed stochastic bandits, but Thompson sampling has been extended to all kinds of
models (see Chapter 36 of the book).
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Randomization is crucial and can be useful in both stochastic bandits and adversarial
bandits (see Chapters 23 and 32 of the book for examples). We should be wary, however,
that injecting noise into our algorithms might come at a cost in terms of variance. What is
gained or lost by the randomization in Thompson sampling is still not clear, but we leave
this cautionary note as a suggestion to the reader to think about some of the costs and
benefits.

Algorithm 1: Thompson sampling (Bernoulli bandits)

Input: Prior α0, β0
Output: at, t ∈ [T ]
Initialize αi = α0, βi = β0, for i ∈ [m]
while t ≤ T − 1 do

Sample θi(t) ∼ Beta(αi, βi) independently for i ∈ [m]
at = argmaxi∈[m] θi(t) with arbitrary tiebreaker
If rt = 1 then αat += 1; If rt = 0 then βat += 1;

A general TS algorithm works on any conjugate priors. When the family of the under-
lying reward distribution is unknown, a Gaussian-Gaussian conjugate (the non-informative
prior) can be useful.

Algorithm 2: Thompson sampling

Input: Prior θ0
Output: at, t ∈ [T ]
Initialize θi = θ0, for i ∈ [m]
while t ≤ T − 1 do

Sample independently for i ∈ [m], θi(t) ∼ p(θ | {rt′}1{at′=i,t′≤t−1})
at = argmaxi∈[m] θi(t) with arbitrary tiebreaker
Update the posterior probability distribution of θat(t+ 1) by

p(θat(t+ 1) | {rt′}1{at′=i}) =
p({rt′}1{at′=i} | θ)p(θ)∫

θ′ p({rt′}1{at′=i} | θ′)p(θ′)dθ′

4.2 Analysis of Thompson sampling

Theorem 1 Assume the rewards of arms are µi-Bernoulli. The regret under TS (Bernoulli
bandits) is at most

RT ≤
∑

i:∆i>0

µ1 − µi

dKL(µ1 ∥ µi)
log T + o(log T ) ,

where the Kullback-Leibler divergence

dKL(µ1 ∥ µi) = µ1 log(
µ1

µi
) + (1− µ1) log(

1− µ1

1− µi
) .
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As is similar to ETC and UCB, instance-independent regret bound of O(
√
mT log T )

can be obtained.
The proof of the regret bound can be obtained by either using probability or using

techniques in information theory. We refer the proofs to the papers listed in suggested
reading.

Due to time and space limits, we are unable to present the original, probabilistic proof

in full. We will instead show a weaker bound of O

((∑
i
log T
∆2

i

)2
)
.

We now use N to denote the total number of arms.
Proof: For simplicity, we assume that arm 1 is the optimal arm. At every time step t, we
divide the set of suboptimal arms into saturated and unsaturated arms. We say that an arm
i ̸= 1 is in the saturated set C(t) at time t, if it has been played at least Li =

24 log T
∆2

i
times

before time t. We bound the regret due to playing unsaturated and saturated suboptimal
arms separately.

In the following derivation, by an interval of time we mean a set of contiguous time steps.
Let random variable Ij denote the interval between (and excluding) the jth and (j + 1)th

plays of the first arm. We say that event M(t) holds at time t, if θ1(t) exceeds µi +
∆i
2 of

all the saturated arms (for t such that C(t) is empty, we define M(t) to hold trivially), i.e.,

M(t) : θ1(t) > max
i∈C(t)

µi +
∆i

2
.

Let random variable γj denote the number of occurrences of event M(t) in interval Ij :

γj = |{t ∈ Ij : M(t) = 1}| .

Events M(t) divide Ij into sub-intervals in a natural way: For ℓ = 2 to γj , let random
variable Ij(ℓ) denote the sub-interval of Ij between the (ℓ − 1)th and ℓth occurrences of
event M(t) in Ij (excluding the time steps in which the event M(t) occurs). We also define
Ij(1) and Ij (γj + 1) : If γj > 0 then Ij(1) denotes the sub-interval in Ij before the first
occurrence of event M(t) in Ij ; and Ij (γj + 1) denotes the sub-interval in Ij after the last
occurrence of event M(t) in Ij . For γj = 0 we have Ij(1) = Ij . We define event E(t) as

E(t) : {θi(t) ∈ [µi −∆i/2, µi +∆i/2] ,∀i ∈ C(t)} .

In words, E(t) denotes the event that all saturated arms have θi(t) tightly concentrated
around their means. Intuitively, from the definition of saturated arms, E(t) should hold
with high probability. We prove this in the lemma below.

Lemma 2 For all t, P(E(t)) ≥ 1 − 4(N−1)
T 2 . For all t, j, and s ≤ j, P(E(t) | s(j) = s) ≥

1− 4(N−1)
T 2 , where s(j) denotes the number of successes in first j plays of arm 1.

Proof: To prove the second statement of this lemma, we are required to lower bound
the probability of P(E(t) | s(j) = s) all t, j, and s ≤ j, by 1 − 4(N−1)

T 2 . Recall that event
E(t) holds if the following is true:{

∀i ∈ C(t), θi(t) ∈
[
µi −

∆i

2
, µi +

∆i

2

]}
.
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We define E+
i (t) as the event

{
θi(t) ≤ µi +

∆i
2 or i /∈ C(t)

}
, and E−

i (t) as the event {θi(t) ≥
µi − ∆i

2 or i /∈ C(t)}. Then, we can bound P(E(t) | s(j)) as

P(E(t) | s(j)) ≤
N∑
i=2

P
(
E+

i (t) | s(j)
)
+ P

(
E−

i (t) | s(j)
)
.

Observe that

P
(
E+

i (t) | s(j)
)
= P

(
θi(t) > µi +

∆i

2
, ki(t) ≥ Li | s(j)

)
,

where ki(t) is the number of plays of arm i until time t− 1. We define Ai(t) as the event

Ai(t) :
Si(t)

ki(t)
≤ µi +

∆

4
,

where Si(t), ki(t) denote the number of successes and number of plays respectively of the

ith arm until time t − 1. We will upper bound the probability of P
(
E+

i (t) | s(j)
)
for all

t, j, i ̸= 1, using,

P
(
E+

i (t) | s(j)
)
= P

(
θi(t) > µi +

∆i

2
, ki(t) ≥ Li | s(j)

)
≤ P

(
Ai(t), ki(t) ≥ Li | s(j)

)
+ P

(
θi(t) > µi +

∆i

2
, ki(t) ≥ Li, Ai(t) | s(j)

)
.

For every i = 1, . . . , N we define variables {Zi,m}, and Z̄i,M . Zi,m denotes the output of
the m-th play of the i-th arm. And,

Z̄i,M =
1

M

M∑
m=1

Zi,m .

Note that for all i,m, Zi,m is a Bernoulli variable with mean µi, and all Zi,m, i = 1, . . . , N ,
m = 1, . . . , T are independent of each other.

Now, instead of bounding the first term P
(
Ai(t), ki(t) ≥ Li | s(j)

)
, we prove a bound

on P
(
A(t), k2(t) ≥ L | Z1,1, . . . , Z1,j

)
. Note that the latter bound is stronger, since s(j) is
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simply
∑j

m=1 Z1,m. For all t, i ̸= 1,

P
(
Ai(t), ki(t) ≥ Li | Z1,1, . . . , Z1,j

)
=

T∑
ℓ=L

P
(
Z̄i,ki(t) > µi +

∆i

4
, ki(t) = ℓ | Z1,1, . . . , Z1,j

)

=
T∑

ℓ=L

P
(
Z̄i,ℓ > µi +

∆i

4
, ki(t) = ℓ | Z1,1, . . . , Z1,j

)

≤
T∑

ℓ=L

P
(
Z̄i,ℓ > µi +

∆i

4
| Z1,1, . . . , Z1,j

)

=
T∑

ℓ=L

P
(
Z̄i,ℓ > µi +

∆i

4

)

≤
T∑

ℓ=L

e−2ℓ∆2
i /16

≤ 1

T 2
.

The equality in the third last line holds because for all i, i′,m,m′, Zi,m and Zi′,m′ are inde-
pendent of each other, which means that Z̄i,ℓ is independent of Z1,m for all m = 1, . . . , j.
The inequality in the second last line is by applying the Chernoff bounds, since Z̄i,ℓ is
simply the average of ℓ i.i.d. Bernoulli variables, each with mean µ2. It will be useful to
define W (ℓ, z) as a random variable distributed as Beta(ℓz + 1, ℓ− ℓz + 1). Note that if at
time t, the number of plays of arm i is ki(t) = ℓ, then θi(t) is distributed as Beta

(
ℓZ̄i,ℓ+

1, ℓ− ℓZ̄i,ℓ + 1
)
, i.e., same as W

(
ℓ, Z̄i,ℓ

)
. Then,

P
(
θi(t) > µi +

∆

2
, Ai(t), ki(t) ≥ Li | Z1,1, . . . , Z1,j

)
=

T∑
ℓ=Li

P
(
θi(t) > µi +

∆i

2
, Ai(t), ki(t) = ℓ | Z1,1, . . . , Z1,j

)

≤
T∑

ℓ=Li

P
(
θi(t) >

Si(t)

ki(t)
− ∆i

4
+

∆i

2
, ki(t) = ℓ | Z1,1, . . . , Z1,j

)

=
T∑

ℓ=Li

P
(
W

(
ℓ, Z̄i,ℓ

)
> Z̄i,ℓ +

∆i

4
, ki(t) = ℓ | Z1,1, . . . , Z1,j

)

≤
T∑

ℓ=Li

P
(
W

(
ℓ, Z̄i,ℓ

)
> Z̄i,ℓ +

∆i

4
| Z1,1, . . . , Z1,j

)

=

T∑
ℓ=Li

P
(
W

(
ℓ, Z̄i,ℓ

)
> Z̄i,ℓ +

∆i

4

)

≤
T∑

ℓ=Li

E
[
FB

ℓ,Z̄i,ℓ+
∆i
4

(
ℓZ̄i,ℓ

)]
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≤
T∑

ℓ=Li

exp

{
−2∆2

i ℓ
2/16

ℓ

}
≤ 1

T 2
.

Here, we used the observation that for all i, i′,m,m′, Zi,m and Zi′,m′ are independent of
each other, which means Z̄i,ℓ and W

(
ℓ, Z̄i,ℓ

)
are independent of Z1,m for all m = 1, . . . , j.

The third last inequality follows from the observation that

FB
n+1,p(r) = (1− p)FB

n,p(r) + pFB
n,p(r − 1) ≤ (1− p)FB

n,p(r) + pFB
n,p(r) = FB

n,p(r) .

The second last inequality follows from the Chernoff-Hoeffding bound. Substituting the
above inequality, we obtain.

P
(
E+

i (t) | s(j)
)
≤ 2

T 2

Similarly, we could obtain

P
(
E−

i (t) | s(j)
)
≤ 2

T 2

Summing over i = 2, . . . , N , we get

P(E(t) | s(j)) ≤ 4(N − 1)

T 2
,

which implies the second statement of the lemma. The first statement follows immediately.
2

Observe that since arm i, if saturated, can be played at time t only if θi(t) is greater
than θ1(t), arm i, if saturated, can be played at time t where M(t) holds only if θi(t) >
µi +∆i/2. Thus, unless the high probability event E(t) is violated, M(t) denotes a play of
an unsaturated arm at time t, and γj essentially denotes the number of plays of unsaturated
arms in interval Ij . And, the number of plays of saturated arms in interval Ij is at most

γj+1∑
ℓ=1

|Ij(ℓ)|+
∑
t∈Ij

I(E(t)) .

We are interested in bounding the regret due to playing saturated arms, which depends not
only on the number of plays, but also on which saturated arm is played at each time step.
Let V ℓ,a

j denote the number of steps in Ij(ℓ), for which a is the best saturated arm, i.e.

V ℓ,a
j =

∣∣∣∣{t ∈ Ij(ℓ) : µa = max
i∈C(t)

µi

}∣∣∣∣ .
Note that we resolve the ties for best saturated arm using an arbitrary, but fixed, ordering
on arms.

Recall that M(t) holds trivially for all t such that C(t) is empty. Therefore, there is at

least one saturated arm at all t ∈ Ij(ℓ), and hence V ℓ,a
j , a = 2, . . . , N are well defined and

cover the interval Ij(ℓ)

|Ij(ℓ)| =
N∑
a=2

V ℓ,a
j
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Next, we will show that the regret due to playing any saturated arm at a time step t in
one of the V ℓ,a

j steps is at most 3∆a + I(E(t)). The idea is that if all saturated arms have
their θi(t) tightly concentrated around their means µi, then either the arm with the highest
mean (i.e., the best saturated arm a ) or an arm with mean very close to µa will be chosen

to be played during these V ℓ,a
j steps. That is, if a saturated arm i is played at a time t

among one of the V ℓ,a
j steps, then, either E(t) is violated, i.e., θi′(t) for some saturated arm

i′ is not close to its mean, or

µi +∆i/2 ≥ θi(t) ≥ θa(t) ≥ µa −∆a/2 ,

which implies that

∆i = µ1 − µi ≤ µ1 − µa +
∆a

2
+

∆i

2
⇒ ∆i ≤ 3∆a .

Therefore, regret due to play of a saturated arm at a time t in one of the V ℓ,a
j steps is at

most 3∆a + I(E(t)). With slight abuse of notation let us use t ∈ V ℓ,a
j to indicate that t is

one of the V ℓ,a
j steps in Ij(ℓ). Then, the expected regret due to playing saturated arms in

interval Ij is bounded as

E [Rs (Ij)] ≤ E

γj+1∑
ℓ=1

N∑
a=2

∑
t∈V ℓ,a

j

(
3∆a + I(E(t))

)+
∑
t∈Ij

I(E(t))

= E

γj+1∑
ℓ=1

N∑
a=2

3∆aV
ℓ,a
j

+ 2E

∑
t∈Ij

I(E(t))

 .

Notice that the second term can be bounded by Lemma 2. For the first term, we show the
following lemma.

Lemma 3 For all j,

E

γj+1∑
ℓ=1

∑
a

V ℓ,a
j ∆a


≤E

[
E [(γj + 1) | s(j)]

N∑
a=2

∆aE
[
min

{
X

(
j, s(j), µa +

∆a

2

)
, T

}
| s(j)

]]
,

where X(j, s(j), y) is defined as the number of trials until an independent sample from
Beta(s+ 1, j − s+ 1) distribution exceeds y.

Proof: Observe that

E

γj+1∑
ℓ=1

V ℓ,a
j | s(j)

 = E

[
T∑

ℓ=1

V ℓ,a
j · I (γj ≥ ℓ− 1) | s(j)

]
.
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Let Fℓ−1 denote the history until before the beginning of interval Ij(ℓ) (i.e., the values of
θi(t) and the outcomes of playing the arms until the time step before the first time step of
Ij(ℓ) ). Note that the value of random variable I (γj ≥ ℓ− 1) is fully determined by Fℓ−1.
Therefore,

E

γj+1∑
ℓ=1

V ℓ,a
j | s(j)


=E

[
T∑

ℓ=1

E
[
V ℓ,a
j · I (γj ≥ ℓ− 1) | s(j),Fℓ−1

]
| s(j)

]

=E

[
T∑

ℓ=1

E
[
V ℓ,a
j | s(j),Fℓ−1

]
· I (γj ≥ ℓ− 1) | s(j)

]
.

Recall that V ℓ,a
j is the number of contiguous steps t for which a is the best arm in saturated

set C(t) and i.i.d variables θ1(t) have value smaller than µa + ∆a
2 . Observe that given

s(j) = s and Fℓ−1, V
ℓ,a
j is the length of an interval which ends when the value of an i.i.d.

Beta (s + 1, j − s + 1) distributed variable exceeds µa +
∆a
2 (i.e., M(t) happens), or if an

arm other than a becomes the best saturated arm, or if we reach time T . Therefore, given
s(j),Fℓ−1, V

ℓ,a
j is stochastically dominated by min

{
X

(
j, s(j), µa +

∆a
2

)
, T

}
. That is, for

all a,

E
[
V ℓ,a
j | s(j),Fℓ−1

]
≤ E

[
min

{
X

(
j, s(j), µa +

∆a

2

)
, T

}
| s(j),Fℓ−1

]
= E

[
min

{
X

(
j, s(j), µa +

∆a

2

)
, T

}
| s(j)

]
.

Substituting the term, we obtain

E

γj+1∑
ℓ=1

V ℓ,a
j | s(j)


≤ E

[
T∑

ℓ=1

E
[
min

{
X

(
j, s(j), µa +

∆a

2

)
, T

}
| s(j)

]
· I (γj ≥ ℓ− 1) | s(j)

]

= E
[
min

{
X

(
j, s(j), µa +

∆a

2

)
, T

}
| s(j)

]
· E

[
T∑

ℓ=1

I (γj ≥ ℓ− 1) | s(j)

]

= E
[
min

{
X

(
j, s(j), µa +

∆a

2

)
, T

}
| s(j)

]
· E [γj + 1 | s(j)] .

This immediately implies,

E

 N∑
a=2

∆aE

γj+1∑
ℓ=1

V ℓ,a
j | s(j)


≤E

[
N∑
a=2

∆aE
[
min

{
X

(
j, s(j), µa +

∆a

2

)
, T

}
| s(j)

]
· E [γj + 1 | s(j)]

]
,
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as the lemma desires. 2

Then, we can decompose the first term as

3E

∑
i Li∑

j=0

E [(γj + 1) | s(j)]
∑
a

∆aE [min {X (j, s(j), ya) , T} | s(j)]


≤3E

∑
i Li∑

j=0

E [(γj + 1) | s(j)]

∑
i Li∑

j=0

∑
a

∆aE [min {X (j, s(j), ya) , T} | s(j)]

 .

Recall that γj is (approximately) the total number of plays of unsaturated arms in
interval Ij . Therefore, the first term in the product above is bounded by the total number

of plays of unsaturated arms, i.e. O
(∑N

i=2 Li

)
. For the second term, we use the following

lemma.

Lemma 4 Consider any positive y < µ1, and let ∆′ = µ1 − y. Also, let R = µ1(1−y)
y(1−µ1)

> 1,

and let D denote the KL divergence between µ1 and y, i.e., D = y ln y
µ1

+ (1− y) ln 1−y
1−µ1

.

E[E[min{X(j, s(j), y), T} | s(j)]] ≤


1 + 2

1−y + µ1

∆′ e−Dj j < y
D lnR

1 + Ry

1−ye
−Dj + µ1

∆′ e−Dj y
D lnR ≤ j < 4 lnT

∆′2

16
T j ≥ 4 lnT

∆′2 ,

where the outer expectation is taken over s(j) distributed as Binomial(j, µ1).

The proof of the lemma is omitted. We observe that E [E [min {X (j, s(j), ya) , T} | s(j)]]
is bounded by O

(
1
∆a

)
. Therefore, the second term is bounded by O

(∑N
i=2 Li

)
as well.

This gives a bound of O
(
(
∑

i Li)
2
)

= O

((∑
i
log T
∆2

i

)2
)

on the above, and thus on the

contribution of the first term towards the regret. The total contribution of the second term
can be bounded by a constant using Lemma 2.

Since an unsaturated arm u becomes saturated after Lu plays, regret due to unsaturated

arms is at most
∑N

u=2 Lu∆u = 24(lnT )
(∑N

u=2
1
∆u

)
. Summing the regret due to saturated

and unsaturated arms, we obtain the weaker bound of O

((∑
i
log T
∆2

i

)2
)

on regret. 2

4.3 Applications

Students should implement ε-greedy, ETC, UCB, and TS and try them on synthetic and
real datasets to gain some intuition about their behavior.
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