
DDA4230 Reinforcement learning UCB algorithms

Lecture 6

Lecturer: Guiliang Liu Scribe: Baoxiang Wang

1 Goal of this lecture

To understand algorithms based on upper confidence bounds (UCB), in terms of the regret
analysis and its advantages over the approaches we previously discussed.
Suggested reading: Chapter 7, 8, and 10 of Bandit algorithms; Five miracles of mirror
descent (Lecture 5, lecture notes);

2 Recap: The ε-greedy and ETC algorithms

For ε-greedy, by choosing εt = min{1, Ct−1∆−2
minm} for some constant C, the regret satisfies
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where C ′ is an absolute constant.
For ETC under 2-armed bandits, when T ≥ 4

√
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where W (y) exp(W (y)) = y denotes the Lambert function.

3 The UCB algorithms

3.1 Motivation

Despite the fact that the ETC algorithm with k = ⌈ 2
∆2W (T

2∆4

32π )⌉ rounds of exploration gives
an optimal bound on regret (the regret bound is log T , where no algorithm can achieve a
better order), the algorithm has a few limitations. Executing the algorithm requires the
knowledge of ∆, which is usually not available in real applications. For example, the
algorithm chooses a news article to be displayed and ∆ denotes the difference between the
popularity of articles that has not been published before. The algorithm also uses T , the
horizon of the problem. This can be unknown in real applications as well (it is fixed, but not
revealed to the agent in advance). Another limitation is that the theoretical result obtained
by ETC is applied to 2-armed bandits only. In practice, both greedy algorithms and ETC
algorithms have limited performance.

The UCB algorithm we discuss today addresses all these problems and is one (out of
two) of the most popular approaches in practice. The advantages of UCB are listed as
follows:
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1. The algorithm does not use ∆i. Note that the regret bound can still depend on ∆i,
though.

2. The algorithm does not use T . Note that the version we present today still uses T for
simplicity and we refer the variant without T to Chapter 8 of the book.

3. UCB is work on multi-armed bandits with any finite number of arms.

Algorithm 1: The UCB algorithm.

Input: δ: confidence level
Output: at, t ∈ {0, 1, . . . , T}
while t ≤ T − 1 do

at = argmax
i∈[m]

UCBi(t− 1, δ),

where ties break arbitrarily and for i ∈ [m],

UCBi(t− 1, δ) =


∞ , Ni,t−1 = 0 ,

1

Ni,t−1

∑
t′≤t−1

rt′1{at′ = i}+

√
2 log(1/δ)

Ni,t−1
, Ni,t−1 > 0 ;

3.2 The optimism principle

The UCB algorithm is based on the principle of optimism in the face of uncertainty, which
states that

one should act as if the environment is as nice as plausibly possible.

In fact, this principle is applicable to other bandit algorithms as well and is beyond the finite-
armed stochastic bandit problem. In general, taking an optimistic view of the unknown leads
to exploration while taking a pessimistic view of new options discourages exploration

For UCB, the optimism principle means using the data observed so far to assign to each
arm a value, called the upper confidence bound. The first term,

µ̂i,t−1 =
1

Ni,t−1

∑
t′≤t−1

rt′1{at′ = i} ,

is the empirical mean of the rewards collected from arm i, where Ni,t−1 =
∑

t′≤t−1 1{at′} is
the number of times arm i has been pulled up to time t− 1. Recall the Chernoff-Hoeffding
bound for n independent 1-sub-Gaussian random variables

P(X − E[X] ≤ z) ≥ 1− exp(−nz2/2) .
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The second term,
√

2 log(1/δ)
Ni,t−1

, is an at least (1−δ)-order statistics of µi (which is E[r(i)], the
true mean of arm i’s reward). Then with high probability the UCB term is an overestimate
of the unknown mean, if Ni,t−1 is a constant

P(µi ≥ µ̂i,t−1 +

√
2 log(1/δ)

Ni,t−1
) ≤ δ .

While Ni,t−1 is also a random variable which is not independent of µ̂i,t−1, the claim holds
up to constant factors (Exercise 7.1 on the book).

The intuitive reason why this leads to sublinear regret is simple. Assuming the upper
confidence bound assigned to the optimal arm is indeed an overestimate, then another arm
can only be played if its upper confidence bound is larger than that of the optimal arm,
which in turn is larger than the mean of the optimal arm. And yet this cannot happen too
often because the additional data provided by playing a suboptimal arm make the upper
confidence bound for this arm eventually fall below that of the optimal arm.

3.3 Analysis

Algorithm 1 first explores all arms exactly once and then estimates each arm using the
(sample-mean based) upper bound of its δ-confidence interval obtained from the Chernoff-
Hoeffding bound. Intuitively, the arm chosen in round t either has a large sample mean or
is underexplored compared to other arms. A suboptimal arm is unlikely to be played long
since its optimism bonus is decreasing to zero. The key ingredient lies in choosing a good
confidence level δ, which again balances the trade-off between exploration and exploitation.

Theorem 1 Assume the rewards of arms are 1-sub-Gaussian. Let δ = T−2. The regret
under UCB is at most

RT ≤ 3

m∑
i=1

∆i +
∑

i:∆i>0

16 log T

∆i
.

Proof: Let c ∈ (0, 1) be a constant. Consider the intersection of two events: 1) UCB
overestimates arm 1 in all T rounds; 2) UCB for each suboptimal arm i falls below µ1 at
time ti, where ti is chosen as the smallest integer such that (1 − c)∆i ≥

√
2 log(1/δ)/ti.

This intersected event occurs with probability at least 1 − Tδ −
∑

i:∆i>0 exp(−tic
2∆2

i /2).

Applying the total probability formula, one obtains an upper bound for RT using Rt =∑m
i=1 E [Ni,t] ∆i from LN4 that

RT ≤
∑

i:∆i>0

T
(
Tδ + exp(−tic

2∆2
i /2)

)
∆i +

∑
i∈[m]

ti∆i .

Letting δ = T−2 and c = 1/2 yields the desired result. 2

Theorem 1 may seem loose when ∆i are small. This can be fixed by separating the arms
into two parts: those with sub-optimality gap less than

√
16m log T/T and greater than
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√
16m log T/T . Bounding E[Ni,T ] by T in the first part and by Theorem 1 in the second

part gives

RT ≤ 3
∑
i∈[m]

∆i + 8
√
mT log T . (3)

The regret in Theorem 1 differs only by a log factor compared to the optimal bound by ETC.
Yet it does not require knowledge on the suboptimality gaps. This gains UCB popularity
in many practical situations.

There are a few things we could consider for extension. First of all, the confidence level in
Theorem 1 depends on horizon. This can be removed by choosing δ in a decreasing format,
say, δt = (1+ t log2 t)−1, and the resulting bound on regret remains unchanged (even better
from simulation results). Secondly, when calculating the UCB, the Hoeffding inequality is
used, which can be rather loose sometimes. For example, consider the Bernoulli bandits
whose means are close to 0 or 1. In such situations, one could apply the Chernoff bound
instead, which gives a confidence interval based on relative entropy. The corresponding
regret will be improved by a taming factor (which usually depends on variance).

The
√
log T factor in (3) can be removed by making the confidence level arm-dependent.

This is achieved in an algorithm termed mini-max optimal strategy (MOSS) in stochastic
bandits (see Chapter 9 of the book). This algorithm achieves asymptotic optimality which
matches the lower bound for minimax stochastic bandits.
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