
DDA4230 Reinforcement learning Explore-then-commit algorithms

Lecture 5

Lecturer: Guiliang Liu Scribe: Baoxiang Wang, Jing Dong

1 Goal of this lecture

To introduce and analyze explore-then-commit (ETC) algorithms.
Suggested reading: Chapter 6 of Bandit algorithms;

2 The explore-then-commit algorithm

Algorithm 1: The explore-then-commit algorithm

Input: k: number of exploration pulls on each arm
Output: π(t), t ∈ {0, 1, . . . , T}
while 0 ≤ t ≤ km− 1 do

at = (t mod m) + 1

while km ≤ t ≤ T − 1 do

at = argmax
i∈[m]

1

k

mk−1∑
t′=0

rt′1{at′ = i}

In the first km rounds (the explore part), then algorithm pulls each arm for k times. The
algorithm then calculates the empirical mean 1

k

∑mk−1
t′=0 rt′1{at′ = i} of the reward of each

arm. After that (the commit part), the arm with the best empirical mean will be selected
and will be pulled for the rest of the horizon, regardless of the reward it generates in
the commit part of the algorithm.

We now show a general regret bound of ETC.

Theorem 1 Assume that r(i) is 1-sub-Gaussian for each i. The regret under ETC satisfies

RT ≤ k
∑
i∈[m]

∆i + (T −mk)
∑
i∈[m]

∆i exp

(
−k∆2

i

4

)
. (1)

Particularly, for two-armed bandits (m = 2), taking k = ⌈max
{
1, 4∆−2

2 log(T∆2
2/4)

}
⌉ yields

RT ≤ ∆2 +
4

∆2
+

4

∆2
log

(
T∆2

2

4

)
. (2)

5-1

Proof: Arm i is pulled for exactly k times in the first mk rounds. It is pulled for T −mk
times in the rest T −mk rounds if the empirical mean at time mk − 1 is optimal for arm i
among all arms. Therefore, the expected number of pulls of arm i through the horizon is

E [NT,i] = k + (T −mk) P
(
i = argmax

i′
µ̂mk−1,i′

)
≤ k + (T −mk) P

(
µ̂mk−1,i ≥ µ̂mk−1,1

)
= k + (T −mk) P

(
µ̂mk−1,i − µi − (µ̂mk−1,1 − µ1) ≥ ∆i

)
.

By the property of sub-Gaussian random variables, µ̂mk−1,i − µi − (µ̂mk−1,1 − µ1) is
√

2/k
-sub-Gaussian. By the tail bound,

P (µ̂mk−1,i − µi − (µ̂mk−1,1 − µ1) ≥ ∆i) ≤ exp

(
−k∆2

i

4

)
.

Therefore,

RT =

m∑
i=1

E [NT,i] ∆i

≤
m∑
i=1

∆i

(
k + (T −mk) P

(
µ̂mk−1,i − µi − (µ̂mk−1,1 − µ1) ≥ ∆i

))
≤

m∑
i=1

∆i

(
k + (T −mk) exp

(
−k∆2

i

4

))
.

as we desired.
We then prove (2) when m = 2. In fact, (1) reduces to

RT ≤∆2

(
k + (T −mk) exp

(
−k∆2

2

4

))
≤∆2

(
k + T exp

(
−k∆2

2

4

))
.

Taking derivative against k helps us get k0 = 4∆−2
2 log(T∆2

2/4). Taking the maximum
with 1 and ceiling make k = ⌈max

{
1, 4∆−2

2 log(T∆2
2/4)

}
⌉ a positive integer, where k0 ≤

k ≤ k0 + 1. Substituting this choice of k gives us

RT ≤∆2

(
k + T exp

(
−k∆2

2

4

))
≤∆2

(
k0 + 1 + T exp

(
−k0∆

2
2

4

))
≤∆2

(
4

∆2
2

log

(
T∆2

2

4

)
+ 1 + T exp

(
−∆2

2

4
· 4

∆2
2

· log
(
T∆2

2

4

)))
≤∆2

(
4

∆2
2

log

(
T∆2

2

4

)
+ 1 + T · 4

T∆2
2

)
5-2

≤∆2 +
4

∆2
+

4

∆2
log

(
T∆2

2

4

)
,

as we desired. 2

Despite the fact that (2) gives an sublinear bound on regret, obtaining this regret bound
depends on the knowledge of both the suboptimality gaps ∆2 and the horizon T . These
quantities are usually fixed but may not be revealed to the agent in advance. We call an
algorithm that does not require the knowledge of T any time. Thus the ETC algorithm is
not an any time algorithm.

It is possible to show that Rt ≤ (∆2 + e−2)
√
T when m = 2 (we leave it as an exercise).

This will remove the dependency on 1
∆2

at a cost of a larger order of T . The dependence of

∆2 could be removed while obtaining a regret bound of O(T 2/3), and the dependence on T
can be resolved by a doubling trick without increasing the regret by too much.

In fact, if the rewards are Gaussian with variance at most 1, the gap-dependent regret
bound under m = 2 can be further improved by O(log log T) by a more careful choice of k.
Denote ∆ = ∆2 and π as the Archimedes’ constant.

Theorem 2 Assume that r(i) is Gaussian with variance at most 1 for each i and T ≥
4
√
2πe/∆2. By choosing k = ⌈ 2

∆2W (T
2∆4

32π)⌉, the regret of ETC satisfies

RT ≤ ∆+
2

∆
(log

T 2∆4

32π
− log log

T 2∆4

32π
+ log(1 +

1

e
) + 2) , (3)

where W (y) exp(W (y)) = y denotes the Lambert function.

Proof: Let A = r0 − r1 + r2 − · · · − r2k−1. The regret is composed of a deterministic
exploration regret of k∆ and a regret (T −2k)∆ of exploitation which happens when A ≤ 0.
As A ∼ N(k∆, 2k),

RT = ∆(k + (T − 2k)P(A ≤ 0))

≤ ∆(k + TP(N(0, 1) ≤ −∆

√
k

2
))

≤ ∆(
2

∆2
W (

T 2∆4

32π
) + 1 + TP(N(0, 1) ≤ −

√
W (

T 2∆4

32π
)))

≤ ∆(
2

∆2
W (

T 2∆4

32π
) + 1 + T

1√
2π

exp(−W (T
2∆4

32π))√
W (T

2∆4

32π)
)

= ∆(
2

∆2
W (

T 2∆4

32π
) + 1 +

4

∆2
)

≤ ∆(
2

∆2
(log

T 2∆4

32π
− log log

T 2∆4

32π
+ log(1 +

1

e
)) + 1 +

4

∆2
) ,

where the last inequality is by the inequality W (y) ≤ log((1 + e−1)y/ log y) when y ≥ e.
2

5-3

Figure 1: Regret (solid line) and regret upper bound (dashed line) of ETC with 2-armed
bandit with underlying distribution being Gaussian.

The choice of k is determined by minimizing (k + TP(N(0, 1) ≤ −∆
√

k
2). Taking

derivative with respect to k, we have

T∆
1√
8k

1√
2π

exp(−∆2k

4
) = 1 ,

or equivalently k∆2

2 exp(k∆2

2) = T 2∆4

32π , which hints us about the optimum k∗ = 2
∆2W (T

2∆4

32π)
up to its rounding.

Some empirical results In the following figure we shall see that our upper bound is
indeed not bad when the suboptimality gap ∆ is large.

A Elimination algorithm

A simple way to avoid tuning the commitment time of ETC is to use elimination algorithm
instead, which is a more generalized version of ETC. The intuition behind the algorithm is
simple: we try to estimate the ∆i and eliminate an arm (does not play this arm anymore)
when its ∆i is too large.

Theorem 3 Assume that r(i) is 1-sub-Gaussian for each i. The regret under the elimina-

tion algorithm with mℓ = 24+2ℓ log(ℓ/δ) and δ = T−1
(
1 +mπ2/6

)−1
is

RT ≤
∑
∆i ̸=0

∆i +
16C

∆i
log(Tm)

for some absolute constant C.

5-4

Algorithm 2: The elimination algorithm

Input: Sequence mℓ: number of exploration pulls on each arm at phase ℓ
Output: π(t), t ∈ {0, 1, . . . , T}
Initialize active set A1 = {1, . . . ,m}.
while ℓ = 1, 2, 3, . . . do

Choose each arm i ∈ Aℓ exactly mℓ times.
Let µ̂i,ℓ be the average reward for arm i from this phase l only

Update active set Aℓ+1 = {i : µ̂i,ℓ + 2−ℓ ≥ maxj∈Aℓ
µ̂j,ℓ}

Proof: We first desire to show that the probability of eliminating the optimal arm
decreases as the algorithm proceeds. By the sub-Gaussian tail bound, we have

P (1 /∈ Aℓ+1, 1 ∈ Aℓ) ≤ P
(
1 ∈ Aℓ, exists i ∈ Aℓ\{1} : µ̂i,ℓ ≥ µ̂1,ℓ + 2−ℓ

)
= P

(
1 ∈ Aℓ, exists i ∈ Aℓ\{1} : µ̂i,ℓ − µ̂1,ℓ ≥ 2−ℓ

)
≤ m exp

(
−mℓ2

−2ℓ

4

)
.

Similarly, we have the probability of the optimal arm 1 and some suboptimal arm both
in the active set bounded by

P(i ∈ Aℓ+1, 1 ∈ Aℓ, i ∈ Aℓ) ≤ P
(
1 ∈ Aℓ, i ∈ Aℓ, µ̂i,ℓ + 2−ℓ ≥ µ̂1,ℓ

)
= P

(
1 ∈ Aℓ, i ∈ Aℓ, (µ̂i,ℓ − µi)− (µ̂1,ℓ − µ1) ≥ ∆i − 2−ℓ

)
≤ exp

(
−
mℓ

(
∆i − 2−ℓ

)2
4

)
.

Let δ ∈ (0, 1) be some constant to be chosen later and mℓ = 24+2ℓ log(ℓ/δ) Then,

P (exists ℓ : 1 /∈ Aℓ) ≤
∞∑
ℓ=1

P (1 /∈ Aℓ+1, 1 ∈ Aℓ)

≤ m

∞∑
ℓ=1

exp

(
−mℓ2

2ℓ

4

)

≤ mδ
∞∑
ℓ=1

1

ℓ2
=

mπ2δ

6
.

and

P (i ∈ Aℓi+1) ≤ P (i ∈ Aℓi+1, i ∈ Aℓi , 1 ∈ Aℓi) + P (1 /∈ Aℓi)

≤ exp

(
−
mℓ

(
∆i − 2−ℓi

)2
4

)
+

mπ2δ

6

5-5

≤ exp

(
−mℓ2

−2ℓi

16

)
+

mπ2δ

6

≤ δ

(
1 +

mπ2

6

)
.

Notice that if we choose δ = T−1
(
1 +mπ2/6

)−1
then P (exists ℓ : 1 /∈ Aℓ) ≤ 1/T and

P (i ∈ Aℓi+1) ≤ 1/T .
To finish the proof, let i be a suboptimal action and notice that 2−ℓi ≥ ∆i/4, 2

2ℓi ≤
16/∆2

i . Furthermore, mℓ ≥ m1 ≥ 1 for ℓ ≥ 1. Hence,

E [NT,i] ≤ TP (i ∈ Aℓi+1) +

ℓi∧T∑
ℓ=1

mℓ

≤ 1 +

ℓi∧T∑
ℓ=1

24+2ℓ log

(
T

δ

)
≤ 1 + C22ℓi log(Tm)

≤ 1 +
16C

∆2
i

log(Tm) .

where x ∧ y denotes min{x, y} and C > 1 is a sufficiently large absolute constant derived
by naively bounding the logarithmic term and the geometric series. The regret follows from
summing this times each ∆i. 2

Acknowledgement

This lecture notes partially use material from Reinforcement learning: An introduction, and
Bandit algorithms. For the proofs, we also referred to On explore-then-commit strategies
by Garivier, Kaufmann, and Lattimore and Finite-time analysis of the multiarmed bandit
problem by Auer, Cesa-bianchi, and Fischer.

5-6

