
DDA4230 Reinforcement learning Greedy algorithms

Lecture 4

Lecturer: Baoxiang Wang Scribe: Baoxiang Wang

1 Goal of this lecture

To understand the greedy and ε-greedy algorithms and complete our first analysis with a
logarithmic regret.
Suggested reading: Chapter 6 of Bandit algorithms;

2 Recap: Multi-armed bandits

The problem of multi-armed bandits is a special case of the MDP we defined

• A = [m] = {1, 2, . . . ,m};

• R(s, a) = r(a) some unknown stochastic function r(·);

• The horizon T is finite.

The policy is aware of the problem structure but has no prior knowledge of the reward func-
tion. We mainly consider the asymptotic worst-case performance, namely, if the algorithm
achieves a regret of either O(log T ), O(T ), or some other orders.

The policy π(·, t) is a mapping from the historical information and the current time t
to an action. We define the regret as

Rt =
m∑
i=1

E[Nt,i]∆i,

where Nt,i =
∑t

t′=0 1{at′ = i} and ∆i = µ∗ − µi. Denote ∆min = mini:∆i>0∆i as the
minimum non-zero gap between an arm and an optimal arm.

In the following analysis, without loss of generality we assume that arm 1 is optimal.
From the form Rt written above, it is intuitive to bound Nt,i for each i to analyze the
performance of a given policy.

3 Greedy algorithms

3.1 The greedy algorithm

The idea of the greedy algorithm is to pull each arm once and then always pull the arm
with the best empirical mean reward. This algorithm focuses purely on exploitation and
does not consider exploration. The algorithm is described in the below chart.1

1When the context is clear we write x = argmax{·} to denote x ∈ argmax{·} with an arbitrary tiebreaker.
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Algorithm 1: The greedy algorithm

Output: π(t), t ∈ {0, 1, . . . , T}
while 0 ≤ t ≤ m− 1 do

π(t) = t+ 1

while m ≤ t ≤ T do

π(t) = argmax
i∈[m]

{
1

Nt−1,i

t−1∑
t′=0

rt′1{at′ = i}

}

The worst-case regret of the greedy algorithm is O(T ). In fact, any algorithm achieves
a regret at most O(T ). It suffices to showing that the greedy algorithm obtains this regret
in some bandit instances. Consider a two-armed bandit instance where r(1) and r(2) follow
Bernoulli distributions with mean p and q respectively (assume p > q, without loss of
generality), then P(r1 = 0, r2 = 1) = q(1 − p). When this event is true, the algorithm will
pull arm 2 for the rest of the horizon, which induces a regret of at least q(1−p)∆2T +o(T ).

The regret order of O(T ) holds even when the algorithm explores each arm for k times
in the beginning for a constant k.

3.2 The ε-greedy algorithm

The ε-greedy algorithm is a variant of the greedy algorithm, which is built upon the phi-
losophy of being optimistic is good. The algorithm is derived to include exploration in the
algorithm. The ε-greedy algorithm takes a non-deterministic policy that forces exploration
on arms which look sub-optimal. The details are given below.

Algorithm 2: The ε-greedy algorithm

Input: εt, t ∈ {0, 1, . . . , T} the exploration parameters
Output: π(t), t ∈ {0, 1, . . . , T}
while 0 ≤ t ≤ m− 1 do

π(t) = t+ 1

while m ≤ t ≤ T do

π(t) ∼

argmax
i∈[m]

{
1

Nt−1,i

t−1∑
t′=0

rt′1{at′ = i}

}
with probability 1− εt

i with probability εt/m, for each i ∈ [m]
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The algorithm amounts to the choice of the exploration parameters εt.
We first establish a negative result when εt does not diminish with t. In fact, if εt > ε

holds for some constant ε > 0, then for T − m rounds, the algorithm has a probability
at least ε to pull a random arm. As pulling a random arm induces an expected regret of
1
m(∆2 + · · ·+∆m) per step, the regret of the algorithm is at least

Rt ≥
1

m
(∆2 + · · ·+∆m)ε(T −m).

Again, a regret in order O(T ) is the worst possible regret and is not desired.
By carefully choosing εt as a decreasing function of t, we can obtain an algorithm with

its regret at most O(log T ).

Theorem 1 Assume that r(i) is 1-sub-Gaussian for each i. By choosing εt = min{1, Ct−1∆−2
minm}

for some sufficiently large constant C, the regret under the ε-greedy algorithm satisfies

RT ≤ C ′
∑
i≥2

(
∆i +

∆i

∆2
min

logmax

{
e,

T∆2
min

m

})
,

where C ′ is an absolute constant.

The proof of the theorem is two-fold. First, the cost of exploration, being Rt =
1
m(∆2+

· · · + ∆m)ε for εt = O(1), reduces to Rt = 1
m(∆2 + · · · + ∆m)O(1 + 1

2 + · · · + 1
T ) =

1
m(∆2 + · · ·+∆m)O(log T ) with the annealing of εt. Second, we show that the probability
of pulling a suboptimal arm in a round after log T explorations is very thin (as thin as at
most O(log T/T )). This can be done by showing that the empirical mean of a suboptimal
gap has a small enough probability to deviate by at least ∆i, compared to the empirical
mean of the optimal arm established by at least log T pulls on each arm.

ε-greedy, with Theorem 1, is the first algorithm we introduce to obtain a logarithmic
regret. Despite this, the choice for ε requires information on the gap of suboptimality.
This is called gap-dependent (also known as problem-dependent, instance-dependent, and
distribution-dependent) algorithms in bandits. When prior knowledge on such a gap is not
available, one will have to pull each arm for a few times to get an estimation of this gap
and plug in the estimation (known as bootstrap). This can cause the performance of the
algorithm to be uncertain in practice.
Proof: Let x̂t =

1
2m

∑t
t′=1 εt′ and xt = ⌊ 1

2m

∑t
t′=1 εt′⌋.

For a suboptimal arm i, at time t,

P(at = i) ≤ εt
m

+ (1− εt)P(µ̂t,i ≥ µ̂t,1)

≤ εt
m

+ (1− εt)(P(µ̂t,i ≥ µi +
∆i

2
) + P(µ̂t,1 ≤ µ1 −

∆i

2
)) .

Now we investigate the first term, εt/m, in the upper bound of P(at = i). Recall that

εt =

1, if t ≤ Cm
∆2

min
Cm

t∆2
min

, if t > Cm
∆2

min
.
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We have

T∑
t=1

εt
m

=

⌊ Cm

∆2
min

⌋∑
t=1

1

m
+

C

∆2
min

· 1

m

T∑
t=⌊ Cm

∆2
min

⌋+1

1

t

≤ Cm

∆2
min

· 1

m
+

Cm

∆2
min

· 1

m

∫ T

Cm

∆2
min

1

t
dt

=
C

∆2
min

(1 + log
T∆2

min

Cm
) .

Similarly,

2xt ≤
1

m

t∑
t′=1

εt′ ≤
C

∆2
min

(1 + log
t∆2

min

Cm
) .

A casual bound of the harmonic number states that log t + 1
2 <

∑t
t′=1

1
t′ < log t + 1. As

such,

2xt ≥
1

m

t∑
t′=1

εt′ − 1

≥

⌊ Cm

∆2
min

⌋∑
t=1

1

m
+

Cm

∆2
min

· 1

m
(

t∑
t=1

1

t
−

⌊ Cm

∆2
min

⌋∑
t=1

1

t
)− 1

≥ (
Cm

∆2
min

− 1)
1

m
+

Cm

∆2
min

· 1

m
(log t+

1

2
− (log

Cm

∆2
min

+ 1))− 1

≥ C

∆2
min

(1 + log
t∆2

min

Cme
1
2

)− (1 +
1

m
) .

We then desire to bound P(µ̂t,i ≥ µi +
∆i
2 ) and P(µ̂1,i ≤ µi − ∆i

2 ). Let ηt′,i to be the
empirical mean of arm i after t′ pulls and NRt,i to be the number of pulls of arm i caused
by random exploration up to time t.

P(µ̂t,i ≥ µi +
∆i

2
) =

t∑
t′=0

P(Nt,i = t′, η̂t′,i ≥ µi +
∆i

2
)

=
t∑

t′=0

P(Nt,i = t′ | η̂t′,i ≥ µi +
∆i

2
)P(η̂t′,i ≥ µi +

∆i

2
)

≤
t∑

t′=0

P(Nt,i = t′ | η̂t′,i ≥ µi +
∆i

2
) exp(−∆2

i t
′/8)

=

xt∑
t′=0

P(Nt,i = t′ | η̂t′,i ≥ µi +
∆i

2
) exp(−∆2

i t
′/8)

+

T∑
t′=xt+1

P(Nt,i = t′ | η̂t′,i ≥ µi +
∆i

2
) exp(−∆2

i t
′/8)
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≤
xt∑

t′=0

P(Nt,i = t′ | η̂t′,i ≥ µi +
∆i

2
) +

∞∑
t′=xt+1

exp(−∆2
i t

′/8)

≤
xt∑

t′=0

P(Nt,i = t′ | η̂t′,i ≥ µi +
∆i

2
) +

8

∆2
i

exp(−∆2
ixt/8)

≤
xt∑

t′=0

P(NRt,i ≤ t′ | η̂t′,i ≥ µi +
∆i

2
) +

8

∆2
i

exp(−∆2
ixt/8)

≤
xt∑

t′=0

P(NRt,i ≤ t′) +
8

∆2
i

exp(−∆2
ixt/8)

≤(xt + 1)P(NRt,i ≤ xt) +
8

∆2
i

exp(−∆2
ixt/8) .

The random variable NRt,i is the summation of 1{A1} + · · · + 1{At}, where the event
At′ denotes a Bernoulli variable that at time t′ arm i is pulled by random exploration,
which happens with probability εt′/m independent of other At′ events. The total variance∑t

i=1V[1{Ai}] ≤
∑t

t′=1
εt′
m (1− εt′

m ). By Bernstein’s inequality

P(
1

t
NRt,i ≥

1

t
E[NRt,i]− z) ≥1− exp(− t2z2

2
∑t

t′=1
εt′
m (1− εt′

m ) + tz
)

≥1− exp(− t2z2

2
∑t

t′=1
εt′
m + tz

)

=1− exp(− t2z2

4x̂t + tz
) .

As such,

P(NRt,i ≤ xt) ≤ P(NRt,i ≤ x̂t)

= P(NRt,i − E[NRt,i] ≤ x̂t − E[NRt,i])

= P(NRt,i − E[NRt,i] ≤ x̂t −
1

m

t∑
t′=1

εt′)

≤ P(NRt,i − E[NRt,i] ≤ −x̂t)

≤ P(
1

t
NRt,i −

1

t
E[NRt,i] ≤ − x̂t

t
)

≤ exp(−
t2( x̂t

t )
2

4x̂t + t( x̂t
t )

)

≤ exp(− x̂t
5
) ≤ exp(−xt

5
) .

Therefore,

P(µ̂t,i ≥ µi +
∆i

2
) ≤ (xt + 1) exp(−xt

5
) +

8

∆2
i

exp(−∆2
ixt
8

) ,

and by the same arguments,

P(µ̂t,1 ≤ µ1 −
∆i

2
) ≤ (xt + 1) exp(−xt

5
) +

8

∆2
i

exp(−∆2
ixt
8

) .
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The regret

RT =
m∑
i=1

E[NT,i]∆i

=
∑
∆i>0

∆i +
∑
∆i>0

∆i

T∑
t=m

P(at = i)

≤
∑
∆i>0

∆i +
∑
∆i>0

∆i

T∑
t=m

(
εt
m

+ (1− εt)(P(µ̂t,i ≥ µ1 +
∆i

2
) + P(µ̂t,1 ≤ µ1 −

∆i

2
)))

≤
∑
∆i>0

∆i +
∑
∆i>0

∆i
C

∆2
min

(1 + log
T∆2

min

Cm
)

+
∑
∆i>0

∆i

T∑
t=m

(1−min{1, Cm

t∆2
min

}) · 2((xt + 1) exp(−xt
5
) +

8

∆2
i

exp(−∆2
ixt
8

)) .

By C
2∆2

min
(1 + log

t∆2
min

Cme
1
2
)− 1 ≤ xt ≤ C

2∆2
min

(1 + log
t∆2

min
Cm ), we have

(1−min{1, Cm

t∆2
min

}) · 2((xt + 1) exp(−xt
5
) +

8

∆2
i

exp(−∆2
ixt
8

))

≤ 2((
C

2∆2
min

(1 + log
t∆2

min

Cm
) + 1) exp(−

C
2∆2

min
(1 + log

t∆2
min

Cme
1
2
)− 1

5
)

+
8

∆2
i

exp(−
∆2

i · C
2∆2

min
(1 + log

t∆2
min

Cme
1
2
)− 1

8
))

≤ 2((
C

2∆2
min

(1 + log
t∆2

min

Cm
) + 1)e

1
5 (
t∆2

mine
1
2

Cm
)
− C

10∆2
min +

8

∆2
i

e
1
8 (
t∆2

mine
1
2

Cm
)
− C∆2

i
16∆2

min )

≤ 2((
C

2∆2
min

(1 + log
t∆2

min

Cm
) + 1)e

1
5 (
t∆2

mine
1
2

Cm
)−2 +

8

∆2
i

e
1
8 (
t∆2

mine
1
2

Cm
)−2) ,

where the last inequality is by letting C be sufficiently large such that C
10∆2

min
> 2 and

C∆2
i

16∆2
min

> 2. With
∑∞

t=1
1
t2

<
∑∞

t=1
log t
t2

< 1, we have

RT ≤
∑
∆i>0

∆i +
∑
∆i>0

∆i
C

∆2
min

(1 + log
T∆2

min

Cm
)

+
∑
∆i>0

∆i

T∑
t=m

(1−min{1, Cm

t∆2
min

}) · 2((xt + 1) exp(−xt
5
) +

8

∆2
i

exp(−∆2
ixt
8

))

<
∑
∆i>0

∆i +
∑
∆i>0

∆i
C

∆2
min

(1 + log
T∆2

min

Cm
)

+
∑
∆i>0

∆i2((
C

2∆2
min

(1 + 1 + log
∆2

min

Cm
) + 1)e

1
5 (
∆2

mine
1
2

Cm
)−2 +

8

∆2
i

e
1
8 (
∆2

mine
1
2

Cm
)−2) ,
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as we desired 2
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