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1 Goal of this lecture

To understand the formulation of multi-armed bandits and some preliminaries needed to
study the problem.

Students should get familiar with learning preliminaries when needed, instead of learning
a lump-sum of techniques in the beginning.
Suggested reading: Chapter 2 of Reinforcement learning: An introduction; Chapter 1, 2,
3, 4, and 5 of Bandit algorithms;

2 Multi-armed bandits

Figure 1: Multi-armed bandits.

The problem of multi-armed bandits (MAB) is a special case of the MDP we defined

• S = {1};

• A = [m] = {1, 2, . . . ,m};

• T (s, a) = 1;

• R(s, a) = r(a) some unknown stochastic function r(·);

• ρ0 = 1;

• γ = 1.

• It terminates at t = T .
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The state space S = {1} is the most simple state space possible, under which one might won-
der if this game differs from the one-step decision making game through a simple argmax.
The reason is that, despite that there is only one state, the reward functions are not known
a priori and can only be inferred using historical observations. To be rigorous, the multi-
armed bandit problem is a simple MDP with a dummy state while we investigate it with
model-based methods. Consequently, there exist some major differences in stochastic ban-
dits and MDPs.

1. The MDP of multi-armed bandits has a finite horizon T . Though, instead of obtaining
an optimal expected return, bandit algorithms aim to achieve asymptotically optimal
expected return for limT→∞.

2. The algorithms in bandits can leverage the knowledge that S = {1}, T (s, a) = 1, and
R(s, a) = r(a). Though, r(a) remains unknown.

Therefore, the optimal policy is a possibly stochastic policy that maps the historical data
and the time t to an action. We can view the difference of π(·, t) and π(·, t + 1) as if this
policy is updated through historical data at time t.

As the study focuses on the asymptotic performance, we mainly use the term regret
instead of return to characterize the performance of an agent. Unless otherwise specified,
in bandit topics we assume that each r(i) is 1-sub-Gaussian, which guarantees the existence
of E[r(i)]. The regret is defined as the difference between the maximum possible expected
return and the expected return of the agent, as

Rt = (t+ 1)max
a

E [r(a)]− E
[ t∑
t′=0

rt′
]
.

In many bandit publications, the regret (instead of the return) is denoted by Rt.
It is common to denote µi = E[r(i)] as the mean of the reward of the i-th arm (action)

and µ∗ = maxi µi as the expected reward of an optimal arm. Also define ∆i = µ∗−µi, with
which we rewrite Rt = E[

∑t
t′=0

∑m
i=1 1{at′ = i}∆i]. By letting Ni,t =

∑t
t′=0 1{at′ = i} as

a random variable adapted to the natural filtration, we alternatively write the regret into

Rt =

m∑
i=1

E [Ni,t] ∆i .

2.1 Type of feedback

Let’s consider some (informal) examples of sequential decisions.

• Investment. Each morning, you choose one stock to invest into, and invest $1. In the
end of the day, you observe the change in value for each stock. Goal: to maximize
wealth.

• Dynamic pricing. A store is selling a digital good (e.g., an app or a song). When
a new customer arrives, the store picks a price. Customer buys (or not) and leaves
forever. Goal: to maximize total profit.
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• News site. When a new user arrives, the site picks a news header to show, observes
whether the user clicks. Goal: to maximize the number of clicks.

Immediately, we observe the differences in their feedback procedures and summarize it into
the following table.

Example Action Reward Other feedback

Investment a stock to invest into change in value dur-
ing the day

change in value for all
other stocks

Dynamic pricing a price p p if sale; 0 otherwise sale ⇒ sale at any
smaller price;
no sale ⇒ no sale at
any larger price

News site an article to display 1 if clicked, 0 other-
wise

none

Table 1: Types of feedback in our examples.

These examples correspond to the 3 types of feedback

• Full feedback. Reward is revealed for all arms;

• Partial feedback. Reward is revealed for some but not necessarily for all arms;

• Bandit feedback. Reward is revealed only for the chosen arm.

Informally speaking, the type of feedback will decide the tool needed to study the problem.
In full feedback problems like stock investing, our action has no impact on the information
collected and thus needs only to focus on leveraging the collected information (i.e. exploita-
tion). The problem is then studied by optimization algorithms and online optimization
algorithms.

The problem with bandit feedback corresponds to the MDP we specified in this lecture
notes. In this case, the agent needs to both exploit the historical information to choose high
reward arms (exploitation) and deploy actions to collect more information (exploration).
The exploration-exploitation tradeoff is one of the most important problems in RL and
MAB is a simple model to focus on this.

Interestingly, investment in high frequency can be a different story. If the market’s
response depends on the action taken, e.g. by placing a large order the agent can impact
the price and the order book, the feedback becomes partial or bandit. This makes high-
frequency investment an application of RL.

2.2 Type of rewards

In our formulation of bandits, we assume the reward function to depend only on a, i.e.
R(s, a) = r(a). This then prescribes the reward signal to be generated from rt ∼ r(at) and
each reward to be independent. The setting is the i.i.d. reward setting in bandits, known
as stochastic bandits.
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• Rewards that are i.i.d. The reward for each arm is drawn independently from a fixed
distribution that depends on the arm but not on the round index t;

• Adversarial rewards. Rewards are chosen by an adversary;

• Strategic rewards. Rewards are chosen by an adversary with known constraints, such
as reward of each arm can change by at most B from one round to another, reward of
each arm can change by at most B from the original reward, or reward of each arm
can change for at most B times;

• Stochastic rewards. Reward of each arm follows some stochastic process or random
walk.

2.3 More applications of bandits

Table 2 illustrates more applications of bandits for reference.

Application Action Reward

medical trials drug to give health outcomes
internet ads which ad to display bid value if clicked, 0 oth-

erwise
content optimization e.g.: font color or page lay-

out
clickthrough rate

sales optimization which products to sell at
which prices

revenue

recommendation systems suggest a movie, restau-
rants, etc.

recommendation success
rate

computer systems which server(s) to route
the job to

job completion time

crowdsourcing systems which tasks to give to
which workers; which price
to offer?

quality of completed work;
number of completed tasks

wireless networking which frequency to use? transmissions success rate
network routing which path to transmit

data
minimize package loss

robot control a “strategy” for a given
state and task

number of tasks success-
fully completed

game playing an action for a given game
state

game win rate

Bayesian optimization the point to evaluate the
function

optimality

Boolean satisfiability problem the variable to toggle correctly output the satis-
fiability

hyperparameter tuning the set of parameter to
continue training with

model performance

Table 2: Applications of bandits.
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3 Some preliminaries

Studying RL and bandits requires the audience to refresh their background on probability
and random variables, including common distributions and relevant inequalities.

3.1 Concentration inequalities

Let X1, . . . , Xn be independent random variables and assume that E[Xi] exists. These
variables are not necessarily identically distributed. Let X = 1

n(X1 + · · ·+Xn) denote the
average. Then, the strong law of large number indicates that when n approaches infinity,

P(X = E[X]) = 1 .

A concentration inequality is a characterization of the convergence described by the
strong law of large number, by bounding both the error term and the probability term in
the number n of samples

P(|X − E[X]| ≤ ε(n)) ≥ 1− δ(n) ,

where ε(n) and δ(n) converge to 0 when n approaches infinity.

Lemma 1 (Chebyshev’s inequality) Let X1, . . . , Xn be i.i.d and assume that the vari-
ance V[Xi] = σ2 exists, then

P(|X − E[X]| ≤ z) ≥ 1− σ2

nz2
.

Proof: [See Chebyshev’s inequality on Wikipedia] 2

Lemma 2 (Hoeffding’s inequality) If 0 ≤ Xi ≤ c for each Xi, then for

P(X − E[X] ≤ z) ≥ 1− exp(−2nz2

c2
) .

Proof: [See Hoeffding’s lemma on Wikipedia] 2

For α > 0 and t > 1, a convenient assignment of z = c
√

α log t
n yields

P(|X − E[X]| ≤ c

√
α log t

n
) ≥ 1− 2t−2α .

By restricting Xi ∈ {0, 1} i.i.d., this inequality reduces to the Chernoff bound. Let

p = E[Xi], by Hoeffding’s inequality P(X−p ≤ z) ≥ 1− exp(−2nz2). By letting z =
√

logn
n

P(|X − p| ≤
√

log n

n
) ≥ 1− 1

n2
.

Lemma 3 (The Chernoff-Hoeffding inequality) If Xi ∼ N (0, 1) for each Xi, then for

P(|X − E[X]| ≤
√

α log t

n
) ≥ 1− 2t−α/2 .
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For random variables that are not necessarily identically distributed and not necessarily
independent, similar results hold when the conditional expectations are constant.

Lemma 4 (The Azuma-Hoeffding inequality) For random variables X1, . . . , Xn ∈ [0, 1]
with constant conditional expectations µi = E[Xi | Xi−1, . . . , X1] for i = 1, . . . , n, then

P(|X − 1

n
(µ1 + · · ·+ µn)| ≤

√
α log t

n
) ≥ 1− 2t−2α .

When µi = 0 for i = 1, . . . , n in the lemma, this corresponds to the concentration of
martingales.

Lemma 5 (Bernstein’s inequalities) For independent Rademacher random variables X1,
. . . , Xn ∈ {−1, 1},

P(|X| ≤ z) ≥ 1− 2 exp(− nz2

2(1 + z
3)
) .

An alternative form of Bernstein’s inequalities states that for Bernoulli random variables
where the total variance

∑n
i=1V[xi | xi−1, . . . , x1] = σ2, then

P(X − E[X] ≤ z) ≥ 1− exp(− n2z2

2σ2 + nz
) .

3.2 Tail bounds

Lemma 6 (Gaussian tail bound) If X ∼ N (0, 1), then for x > 0,

1√
2π

(
1

x
− 1

x3
) exp(−x2

2
) ≤ P(X ≥ x) ≤ 1√

2πx
exp(−x2

2
) .

Lemma 7 (Gaussian tail bound) For a σ2-sub-Gaussian random variable X, for z ≥ 0,

P(X − E[X] ≤ z) ≥ 1− exp(− z2

2σ2
) .
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