
DDA4230 Reinforcement learning Interconnections between policy and value

Lecture 20

Lecturer: Guiliang Liu Scribe: Baoxiang Wang

1 Goal of this lecture

In this lecture we revisit policy-based and value-based methods. As we have discussed in the
beginning of discrete MDPs, the two types of methods given known model are in a primal-
dual relationship. We seek analogous of such interconnections in RL with continuous spaces
and deep RL.
Suggested reading: Reference in the lecture notes.

2 Recap: Policy gradient and Q-learning

In policy gradient, we can sample multiple trajectories following the policy π and use the
empirical mean to estimate the gradient

∇ϕJ(ϕ) = Eπ[Qπ(s, a)∇ϕ log πϕ(a | s)] .

Algorithm 1: REINFORCE with baseline

Initialize the policy parameter ϕ and θ at random.
for each episode do

Sample one trajectory under policy πϕ: s0, a0, r0, s1, a1, r1 . . . , sT
for each t = 1, 2, . . . , T do

Gt ←
∑T

t′=t γ
t′−trt′

δ ← Gt − V̂ (st, θ)
θ ← θ + αθδ∇θV̂ (st, θ)
ϕ← ϕ+ αϕγ

tδ∇ϕ log πϕ(at | st)

In Q-learning, we use stochastic gradient descent to find a local minimum of the squared
error by sampling the gradients with respect to the parameters θ and updating θ as

∆θ = −1

2
αθ∇θJ(θ) = αθE[(Q(s, a)− Q̂(s, a, θ))∇θQ̂(s, a, θ)] .

3 Stein’s identity

Stein’s identity is a commonly used lemma that describes the property of the score function.
Under the context of reinforcement learning, it states that given a policy π(a | s),

Eπ[∇a log π(a | s)ϕ(s, a) +∇aϕ(s, a)] = 0

20-1

Algorithm 2: Deep Q-learning

Initialize replay memory D with a fixed capacity
Initialize action value function Q̂ with random weights θ
Initialize target action value function Q̂ with weights θ− = θ
for episode k = 1, . . . ,K do

Observe initial frame x1 and pre-process frame to get state s1
for time step t = 1, . . . , T do

Select action at =

{
random action with probability ϵ

argmaxa Q̂(st, a, θ) otherwise
Execute action at in emulator and observe reward rt and image xt+1

Pre-process st, xt+1 to get st+1, and store transition (st, at, rt, st+1) in D
Sample uniformly a random minibatch of N transitions
{(sj , aj , rj , sj+1)}j∈[N] from D
Set yj = rj if episode ends at step j + 1, otherwise set
yj = rj + γmaxa′ Q̂(sj+1, a

′, θ−)
Perform a stochastic gradient descent step on
J(θ) = 1

N

∑N
j=1(yj − Q̂(sj , aj , θ))

2 with respect to θ

Every C steps reset θ− = θ

holds for an arbitrary state-action function ϕ(s, a). An example is that when we set ϕ(s, a) =
b(s) that does not depend on a, the identity is reduced to Eπ[∇a log π(a | s)b(s)] = 0, which
guarantees that the baseline in policy gradient is unbiased. One could also let ϕ(s, a) =
Q(s, a), such that

Eπ[∇a log π(a | s)Q(s, a) +∇aQ(s, a)] = 0 .

Without loss of generality assume that the policy π ∼ N (µ, σ) follows a Gaussian
distribution. A reparametrization of π is to isolate the stochasticity in π into a standard
normal random variable ξ ∼ N (0, 1), such that a = fθ(s, ξ) and therefore

π(a | s) =
∫
fθ(s, ξ)P(ξ)dξ .

With Stein’s identity, we could show that for an arbitrary ϕ

E[∇θ log π(a | s)ϕ(s, a)] = E[∇θfθ(s, ξ)∇aϕ(s, a)] .

Therefore, the policy gradient estimator

E[∇θ log π(a | s)Q(s, a)] = E[∇θfθ(s, ξ)∇aQ(s, a)] ,

which indicates that the right hand side term is also an estimate of the policy gradient.
When f does not depend on ξ, this estimator is known as the deep deterministic policy
gradient.

20-2

4 Actor–critic methods

In practice, most of the variance is from the Monte-Carlo estimation Gt of Q(st, at). An
estimation with much lower variance can be obtained by estimating a parametrized Q(s, a)
and bootstrap the estimation into the policy gradient. This results in a biased estimator
but with much lower variance. One way to estimate the value function is the temporal-
difference method, which has been discussed in previous lectures. With this bootstrap, the
methods is called actor-critic.

Actor-critic methods consist of two models.

• The critic updates the value function parameters w.

• The actor updates the policy parameters θ in the direction suggested by the critic.

Note that although the REINFORCE with baseline method learns both a policy and a state
value function, we do not consider it to be an actor–critic method because its state value
function is used only as a baseline instead of a critic.

One-step actor–critic methods replace the full return of REINFORCE with the one-step
return and use a learned state value function as the baseline, as

θt+1 = θt + αθ(Gt − V̂ (st,w))∇ log πθ(at | st)
= θt + αθ(rt + γV̂ (st+1,w)− V̂ (st,w))∇ log πθ(at | st) .

This algorithm then takes two inputs: a differentiable policy parametrized by πθ(a | s) and
a differentiable state value function parametrized by V̂ (s,w).

Algorithm 3: One-step actor–critic (episodic)

Initialize the policy parameter θ and w at random. for each episode do
Initialize s0, the first state of each episode
for each t = 0, 1, . . . , T − 1 do

sample a ∼ π(a | st,θ)
take action a and observe s′, r
δ ← r + γV̂ (s′,w)− V̂ (s,w)
w ← w + αwδ∇wV̂ (s,w)
θ ← θ + αθδ∇θ log π(a | s,θ)
s′ ← s

5 Soft actor-critic

Model-free deep RL methods are notoriously expensive in terms of their sample complexity.
Even relatively simple tasks can require millions of steps of data collection, and complex
behaviors with high-dimensional observations might need substantially more. Meanwhile,
these methods are often brittle with respect to their hyperparameters: learning rates, ex-
ploration constants, and other settings must be set carefully for different problem set-
tings to achieve good results. One cause for the poor sample efficiency of deep RL meth-
ods is on-policy learning: some of the most commonly used deep RL algorithms, such as

20-3

TRPO [SLA+15], PPO [SWD+17] or A3C [MBM+16], require new samples to be collected
for each gradient step. This quickly becomes extravagantly expensive, as the number of
gradient steps and samples per step needed to learn an effective policy increases with task
complexity. Off-policy algorithms aim to reuse past experience. This is not directly fea-
sible with conventional policy gradient formulations, but is relatively straightforward for
Q-learning based methods [MKS+15]. Unfortunately, the combination of off-policy learning
and high-dimensional, nonlinear function approximation with neural networks presents a
major challenge for stability and convergence [MSB+09]. This challenge is further exacer-
bated in continuous state and action spaces, where a separate actor network is often used
to perform the maximization in Q-learning. A commonly used algorithm in such settings,
deep deterministic policy gradient (DDPG) [LHP+16], provides for sample-efficient learn-
ing but is notoriously challenging to use due to its extreme brittleness and hyperparameter
sensitivity [DCH+16, HIB+18].

In this section, we devise an off-policy maximum entropy actor-critic algorithm, called
soft actor-critic (SAC) [HZH+18], which provides for both sample-efficient learning and
stability. This algorithm extends readily to very complex, high-dimensional tasks, such as
the Humanoid benchmark [DCH+16] with 21 action dimensions, where off-policy methods
such as DDPG typically struggle to obtain good results. SAC also avoids the complexity
and potential instability associated with approximate inference in prior off-policy maximum
entropy algorithms based on soft Q-learning [HTAL17]. We discuss a convergence proof for
policy iteration in the maximum entropy framework, and then introduce the SAC algorithm
based on an approximation to this procedure that can be practically implemented with deep
neural networks.

5.1 Soft policy iteration

Standard RL maximizes the expected sum of rewards E(st,at)

∑
t[r(st, at)]. We will consider

a more general maximum entropy objective, which favors stochastic policies by augmenting
the objective with the expected entropy of the policy over ρπ(st), as

J(π) =

T∑
t=0

E(st,at)[r(st, at) + αH(π(· | st))] . (1)

The temperature parameter α determines the relative importance of the entropy term
against the reward, and thus controls the stochasticity of the optimal policy. The maxi-
mum entropy objective differs from the standard maximum expected reward objective used
in conventional reinforcement learning, though the conventional objective can be recovered
in the limit as α→ 0. For the rest of this lecture notes, we will omit writing the temperature
explicitly, as it can always be subsumed into the reward by scaling it by α−1.

We will begin by deriving soft policy iteration, a general algorithm for learning optimal
maximum entropy policies that alternates between policy evaluation and policy improve-
ment in the maximum entropy framework. Our derivation is based on a tabular setting,
to enable theoretical analysis and convergence guarantees, and we extend this method into
the general continuous setting in the next section. We will show that soft policy iteration
converges to the optimal policy within a set of policies which might correspond, for instance,
to a set of parameterized densities.

20-4

In the policy evaluation step of soft policy iteration, we wish to compute the value of a
policy π according to the maximum entropy objective in Equation (1). For a fixed policy,
the soft Q-value can be computed iteratively, starting from any function Q : S × A → R
and repeatedly applying a modified Bellman backup operator Bπ given by

BπQ(st, at) = r(st, at) + γEst+1∼P[V (st+1)] , (2)

where

V (st) = Eat∼π[Q(st, at)− log π(at | st)] (3)

is the soft state value function. We can obtain the soft value function for any policy π by
repeatedly applying Bπ as formalized below.

Lemma 1 (Soft policy evaluation) Consider the soft Bellman backup operator Bπ in
Equation (2) and a mapping Q0 : S × A → R with |A| < ∞, and define Qk+1 = BπQk.
Then the sequence Qk will converge to the soft Q-value of π as k →∞.

Proof: Define the entropy augmented reward as rπ(st, at) = r(st, at)+Est+1∼P [H (π(· | P))]
and rewrite the update rule as

Q(st, at)← rπ(st, at) + γEst+1∼P,at+1∼π[Q(st+1, at+1)]

and apply the standard convergence results for policy evaluation [SB18]. The assumption
|A| <∞ is required to guarantee that the entropy augmented reward is bounded. 2

In the policy improvement step, the policy is updated towards the exponential of the
new Q-function. This particular choice of update can be guaranteed to result in an improved
policy in terms of its soft value. To account for the constraint that π ∈ Π, the improved
policy is projected into such a desired set of policies. While in principle one could choose
any projection, it will turn out to be convenient to use the information projection defined
in terms of the Kullback-Leibler divergence. In the other words, in the policy improvement
step, for each state, we update the policy according to

πnew = argmin
π′∈Π

dKL

(
π′(· | st) ∥

exp (Qπold(st, ·))
Zπold(st)

)
. (4)

The partition function Zπold(st) normalizes the distribution, and while it is intractable in
general, it does not contribute to the gradient with respect to the new policy and can thus
be ignored, as noted in the next section. For this projection, we can show that the new,
projected policy has a higher value than the old policy with respect to the objective in
Equation (1). We formalize this result in Lemma 2.

Lemma 2 (Soft policy improvement) Let πold ∈ Π and let πnew be the optimum of the
minimization problem defined in Equation (4). Then, Qπnew(st, at) ≥ Qπold(st, at) for all
(st, at) ∈ S ×A when |A| <∞.

20-5

Proof: Let πold ∈ Π and let Qπold and V πold be the corresponding soft action value
function and soft state value function, and let πnew be defined as

πnew(· | st) = argmin
π′∈Π

dKL

(
π′(· | st) ∥ exp (Qπold(st, ·)− logZπold(st))

)
= argmin

π′∈Π
Jπold(π

′(· | st)) ,

where the second equation is our definition of J . It must be the case that Jπold(πnew(· |
st)) ≤ Jπold(πold(· | st)), since we can always choose πnew = πold ∈ Π. Hence

Eat∼πnew [log πnew(at | st)−Qπold(st, at) + logZπold(st)] ≤ Eat∼πold [log πold(at | st)−Qπold(st, at) + logZπold(st)] .

Since the partition function Zπold depends only on the state, the inequality reduces to

Eat∼πnew [Qπold(st, at)− log πnew(at | st)] ≥ V πold(st) . (5)

Next, consider the soft Bellman equation

Qπold(st, at) = r(st, at) + γEst+1∼P[V
πold(st+1)]

≤ r(st, at) + γEst+1∼P[Eat+1∼πnew [Q
πold(st+1, at+1)− log πnew(at+1 | st+1)]]

...

≤ Qπnew(st, at) ,

where we have repeatedly expanded Qπold on the RHS by applying the soft Bellman equation
and the bound in Equation (5). Convergence to Qπnew follows from Lemma 1. 2

The full soft policy iteration algorithm alternates between the soft policy evaluation and
the soft policy improvement steps, and it will provably converge to the optimal maximum
entropy policy among the policies in Π, as shown in the below lemma.

Lemma 3 (Soft policy iteration) Repeated application of soft policy evaluation and soft
policy improvement from any π ∈ Π converges to a policy π∗ such that Qπ

∗
(st, at) ≥

Qπ(st, at) for all π ∈ Π and (st, at) ∈ S ×A, assuming that |A| <∞.

Proof: Let πi be the policy at iteration i. By Lemma 2, the sequence Qπi is monoton-
ically increasing. Since Qπ is bounded above for π ∈ Π (both the reward and entropy are
bounded), the sequence converges to some π∗. We will still need to show that π∗ is indeed
optimal. At convergence, it must be the case that Jπ∗(π∗(· | st)) < Jπ∗(π(· | st)) for all
π ∈ Π, π ̸= π∗. Using the same iterative argument as in the proof of Lemma 2, we get
Qπ

∗
(st, at) > Qπ(st, at) for all (st, at) ∈ S ×A, that is, the soft value of any other policy in

Π is lower than that of the converged policy. Hence π∗ is optimal in Π. 2

Although this algorithm will provably find the optimal solution, we can perform it in
its exact form only in the tabular case. Therefore, we will next approximate the algorithm
for continuous domains, where we need to rely on a function approximator to represent
the Q-values, and running the two steps until convergence would be computationally too
expensive. The approximation gives rise to a new practical algorithm, called soft actor-
critic.

20-6

5.2 SAC algorithm for deep RL

As discussed above, large continuous domains require us to derive a practical approxima-
tion to soft policy iteration. To that end, we will use function approximators for both the
Q-function and the policy, and instead of running evaluation and improvement to conver-
gence, alternate between optimizing both networks with stochastic gradient descent. We
will consider a parameterized state value function Vψ(st), soft Q-function Qθ(st, at), and a
tractable policy πϕ(at | st). The parameters of these networks are ψ, θ, and ϕ. For exam-
ple, the value functions can be modeled as expressive neural networks, and the policy as a
Gaussian with mean and covariance given by neural networks. We will next derive update
rules for these parameter vectors.

The state value function approximates the soft value. There is no need in principle
to include a separate function approximator for the state value, since it is related to the
Q-function and the policy according to Equation (3). This quantity can be estimated from
a single action sample from the current policy without introducing a bias, but in practice,
including a separate function approximator for the soft value can stabilize training and is
convenient to train simultaneously with the other networks.

Update Vψ(s) The soft value function is trained to minimize the squared residual error

JV (ψ) = Est∼D

[
1

2

(
Vψ(st)− Eat∼πϕ [Qθ(st, at)− log πϕ(at | st)]

)2]
, (6)

where D is the distribution of previously sampled states and actions, or a replay buffer.
The gradient of Equation (6) can be estimated with an unbiased estimator

∇̂ψJV (ψ) = ∇ψVψ(st) (Vψ(st)−Qθ(st, at) + log πϕ(at | st)) , (7)

where the actions are sampled according to the current policy instead of the replay buffer
and the action value Qθ(st, at) can be replaced by its Monte-Carlo sample.

Update Qθ(s, a) The soft Q-function parameters can be trained to minimize the soft
Bellman residual

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st, at)− Q̂(st, at)

)2
]
,

where

Q̂(st, at) = r(st, at) + γEst+1∼P[Vψ̄(st+1)] ,

which again can be optimized with stochastic gradients

∇̂θJQ(θ) = ∇θQθ(at, st)
(
Qθ(st, at)− r(st, at)− γVψ̄(st+1)

)
.

The update makes use of a target value network Vψ̄, where ψ̄ can be an exponentially
moving average of the value network weights, which has been shown to stabilize training
[MKS+15]. Alternatively, we can update the target weights to match the current value
function weights periodically.

20-7

Update πϕ(a | s) Finally, the policy parameters can be learned by directly minimizing
the expected KL-divergence in Equation (4)

Jπ(ϕ) = Est∼D

[(
πϕ(· | st) ∥

exp (Qθ(st, ·))
Zθ(st)

)]
. (8)

There are several options for minimizing Jπ. A typical solution for policy gradient methods
is to use the likelihood ratio gradient estimator (REINFORCE [Wil92]), which does not
require backpropagating the gradient through the policy and the target density networks.
However, in our case, the target density is the Q-function, which is represented by a neural
network and can be differentiated. It is thus convenient to apply the reparameterization
trick instead, resulting in an estimator with a lower variance. To that end, we reparameterize
the policy using a neural network transformation

at = fϕ(ϵt; st) ,

where ϵt is an input noise vector, sampled from some fixed distribution, such as a spherical
Gaussian. We can now rewrite the objective in Equation (8) as

Jπ(ϕ) = Est∼D,ϵt∼N [log πϕ(fϕ(ϵt; st) | st)−Qθ(st, fϕ(ϵt; st))] , (9)

where πϕ is defined implicitly in terms of fϕ. We can approximate the gradient of Equation
(9) with

̂∇ϕJπ(ϕ) = ∇ϕ log πϕ(at | st) + (∇at log πϕ(at | st)−∇atQ(st, at))∇ϕfϕ(ϵt; st) , (10)

where at is evaluated at fϕ(ϵt; st). This unbiased gradient estimator extends the DDPG
style policy gradients [LHP+16] to any tractable stochastic policy.

SAC algorithm The algorithm also makes use of two Q-functions to mitigate maxi-
mization bias in the policy improvement step that is known to degrade the performance
of value-based methods [Has10, FHM18]. In particular, we parameterize two Q-functions,
with parameters θ1 and θ2, and train them independently to optimize JQ(θ1) and JQ(θ2), re-
spectively. We then use the minimum of the Q-functions for the value gradient in Equation
(7) and policy gradient in Equation (10), as proposed by [FHM18].

The method alternates between collecting experience from the environment with the
current policy and updating the function approximators using the stochastic gradients from
batches sampled from a replay buffer. In practice, a single environment step is taken followed
by one or several gradient steps. The complete algorithm is described in Algorithm 4.

6 Interconnection between policy-based and value-based learn-
ing

With Equation (10) pointing out the interconnection between an action-dependent term
and DDPG via a reparameterized policy, this connects learning via trial and error and via
the gradient of the action value function. Previous work, including entropy-based policies
[HTAL17], interpolated policy gradient [GLG+17b, GLG+17a] and action-dependent base-
lines [WRD+18, LFM+18, GCW+18, TBG+18] also built up preliminary understanding of
this topic, for which we leave them to the readers to explore.

20-8

Algorithm 4: Soft actor-critic (SAC)

Initialize parameter vectors ψ, ψ̄, θ1, θ2, ϕ
for each iteration do

for each environment step do
at ∼ πϕ(at | st)
st+1 ∼ P(st+1 | st, at)
D ← D ∪ {(st, at, r(st, at), st+1)}

for each gradient step do

ψ ← ψ − λV ∇̂ψJV (ψ)
θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2}
ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
ψ̄ ← τψ + (1− τ)ψ̄

Acknowledgement

This lecture notes use material from the original SAC paper.

References

[DCH+16] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking deep reinforcement learning for continuous control. In Inter-
national Conference on Machine Learning, pages 1329–1338, 2016.

[FHM18] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. In International Conference on Machine
Learning, pages 1587–1596, 2018.

[GCW+18] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud.
Backpropagation through the void: Optimizing control variates for black-box
gradient estimation. In International Conference on Learning Representations,
2018.

[GLG+17a] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, and
Sergey Levine. Q-prop: Sample-efficient policy gradient with an off-policy
critic. In International Conference on Learning Representations, 2017.

[GLG+17b] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, Bern-
hard Schölkopf, and Sergey Levine. Interpolated policy gradient: Merging on-
policy and off-policy gradient estimation for deep reinforcement learning. In
Advances in Neural Information Processing Systems, pages 3849–3858, 2017.

[Has10] Hado van Hasselt. Double q-learning. In Advances in Neural Information
Processing Systems, volume 2, pages 2613–2621, 2010.

20-9

[HIB+18] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Pre-
cup, and David Meger. Deep reinforcement learning that matters. In AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[HTAL17] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforce-
ment learning with deep energy-based policies. In International Conference on
Machine Learning, pages 1352–1361, 2017.

[HZH+18] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon
Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al.
Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[LFM+18] Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu.
Action-dependent control variates for policy optimization via Stein identity. In
International Conference on Learning Representations, 2018.

[LHP+16] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. In International Conference on Learning Repre-
sentations, 2016.

[MBM+16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International Conference
on Machine Learning, pages 1928–1937, 2016.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through deep reinforcement learn-
ing. Nature, 518(7540):529–533, 2015.

[MSB+09] Hamid Reza Maei, Csaba Szepesvari, Shalabh Bhatnagar, Doina Precup, David
Silver, and Richard S Sutton. Convergent temporal-difference learning with
arbitrary smooth function approximation. In Advances in Neural Information
Processing Systems, pages 1204–1212, 2009.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[SLA+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International Conference on Ma-
chine Learning, pages 1889–1897. PMLR, 2015.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

20-10

[TBG+18] George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E Turner, Zoubin
Ghahramani, and Sergey Levine. The mirage of action-dependent baselines
in reinforcement learning. In International Conference on Machine Learning,
2018.

[Wil92] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8(3-4):229–256, 1992.

[WRD+18] Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre
M. Bayen, Sham Kakade, Igor Mordatch, and Pieter Abbeel. Variance re-
duction for policy gradient with action-dependent factorized baselines. In In-
ternational Conference on Learning Representations, 2018.

20-11

	Goal of this lecture
	Recap: Policy gradient and Q-learning
	Stein's identity
	Actor–critic methods
	Soft actor-critic
	Soft policy iteration
	SAC algorithm for deep RL

	Interconnection between policy-based and value-based learning

