
DDA4230 Reinforcement learning Imitation learning

Lecture 20

Lecturer: Guiliang Liu Scribe: Baoxiang Wang

1 Goal of this lecture

In this lecture we discuss imitation learning, where the reward signal is not available and
instead a set of experiences generated by some experts is given.
Suggested reading: References in the lecture notes.

2 Introduction

In reinforcement learning, there are several theoretical and practical hurdles that must
be overcome. These include optimization, the effect of delayed consequences, how to do
exploration, and how to generalize. Importantly, however, we would like to handle all of
the above challenges while also being data efficient and computationally efficient.

We have discussed general approaches to efficient exploration in RL, for which the
techniques are capable of handling general MDPs. However, if we have known structure in
the problem, or we have outside knowledge that we can use, we can explore considerably
more efficiently. In this lecture, we will talk about how to imitate and learn from human
(or expert, generally) behavior on tasks.

2.1 Imitation learning

Previously, we have aimed to learn policies from rewards, which are often sparse. For
example, a simple reward signal may be whether or not an agent won a game. This approach
is successful in situations where data is cheap and easily gathered. This approach fails
however, when data gathering is slow, failure must be avoided (e.g. autonomous vehicles),
or safety is desired.

One approach to mitigate the sparse reward problem is to manually design reward
functions that are dense in time. However, this approach requires a human to hand-design
a reward function with the desired behavior in mind. It is therefore desirable to learn by
imitating agents performing the task in question.

2.2 Learning from demonstration

Generally, experts provide a set of demonstration trajectories, which are sequences of states
and actions. More formally, we assume that we are given

• State space, action space;

• Access to the transition oracle P(s′ | s, a);

20-1

• Set of one or more teacher demonstrations (s0, a0, s1, a1, . . .), where actions are drawn
from the teacher’s policy π∗.

However, no reward function oracle R and no explicit transition model P(s′ | s, a) are given.

3 Behavioral cloning

A natural question raised out of this context is then

Can we learn the teacher’s policy using supervised learning?

In behavioral cloning, we aim simply to learn the policy via supervised learning. Specifically,
we will fix a policy class and aim to learn a policy mapping states to actions given the data
tuples {(s0, a0), (s1, a1), . . .}. One notable example of this is ALVINN (Figure 1), which
learned to map from sensor inputs to steering angles.

Figure 1: NAVLAB, the CMU autonomous navigation test vehicle.

One challenge to this approach is that data is not distributed i.i.d. in the state space.
This i.i.d. assumption is standard in the supervised learning literature and theory. However,
in the RL context, errors are compounding and they accumulate over the length of the
episode. The training data for the learned policy will be tightly clustered around expert
trajectories. If a mistake is made that puts the agent in a part of the state space that the
expert did not visit, the agent has no data to learn a policy from. In this case, the error
scales quadratically in the episode length, as opposed to the linear scaling in standard RL.

3.1 DAGGER: Dataset aggregation

Dataset aggregation (DAGGER, Algorithm 1, [RGB11]) aims to mitigate the problem of
compounding errors by adding data for newly visited states. As opposed to assuming there
is a pre-defined set of expert demonstrations, we assume that we can generate more data
from an expert. The limitation of this, of course, is that an expert must be available to
provide labels, sometimes in real time.

20-2

Algorithm 1: DAGGER

Initialize D ← ∅
Initialize π̂1 to any policy in Π
for i = 1 to N do

Let πi = βiπ
∗ + (1− βi)π̂i

Sample T -step trajectories using πi
Get dataset Di = {(s, π∗(s))} of visited states by πi and actions given by expert
Aggregate datasets: D ← D ∪Di

Train classifier π̂i+1 on D
return best π̂i on validation

4 Inverse reinforcement learning (IRL)

Behavior cloning directly learns the policy as desired, but its practical performance can be
limited. The reason is that apart from the input provided by the experts, there are not
much generalization that are provided by the algorithm. Instead, a better generalization
can be obtained by learning the reward function, which is a succinct description of the task,
from the expert input.

Can we recover the reward function R from expert input?

In inverse reinforcement learning, which is also referred to as inverse optimal control, the
goal is to learn the reward function (that has not been provided) based on the expert demon-
strations. Without assumptions on the optimality of the demonstrations, this problem is
intractable as any arbitrary reward function may give rise to the observed trajectories.

4.1 Linear feature reward inverse RL

We consider a reward which is represented as a linear combination of features

R(s) = wTx(s) ,

where R(·) is a deterministic realization of R(·) and w ∈ Rd, x : S → Rd represent the
weight and the feature. In this case, the IRL problem is to identify the weight vector w,
given a set of demonstrations. The resulting value function for a policy π can be expressed
as

V π(s) = Eπ

[∞∑
t=0

γtR(st) | s0 = s

]

= Eπ

[∞∑
t=0

γtwTx(st) | s0 = s

]

= wTEπ

[∞∑
t=0

γtx(st) | s0 = s

]
= wTµ(π) ,

20-3

where µ(π | s0 = s) ∈ Rd is the discounted weighted frequency of state features x(s) under
policy π. Note that

Eπ∗

[∞∑
t=0

γtR∗(st) | s0 = s

]
≥ Eπ

[∞∑
t=0

γtR∗(st) | s0 = s

]
, ∀π ,

where R∗ denotes an optimal reward function. Thus, if an expert’s demonstrations are
optimal (i.e. actions are drawn from an optimal policy), to identify w it is sufficient to find
some w∗ such that

w∗Tµ(π∗ | s0 = s) ≥ w∗Tµ(π | s0 = s) , ∀π,∀s ,

where some restrictions are put on w∗ to avoid trivial solutions to the linear system. As
long as this constraint is linear, such as ∥w∗∥1 = 1, and a slackness variable is introduced
to the program, the problem can be solved by linear programming. In a sense, we want
to find a parametrization of the reward function such that the expert policy outperforms
other policies.

5 Apprenticeship learning

More generally, we turn back to our original motivation to learn a good policy form expert
input without an access to the reward function. Armed with inverse reinforcement learning,
the question we are asking is

Can we use the recovered reward to generate a good policy?

For a policy π to perform as well as the expert policy π∗, it suffices that we have a policy
such that its discounted cumulative feature expectations match the expert’s policy [AN04].
More precisely, if

∥µ(π | s0 = s)− µ(π∗ | s0 = s)∥1 ≤ ϵ ,

then by the Cauchy-Schwartz inequality, for all w with ∥w∥∞ ≤ 1,

|wTµ(π | s0 = s)− wTµ(π∗ | s0 = s)| ≤ ϵ .

This observation leads to Algorithm 2 for learning a policy that is as good as the expert
policy (see [AN04] for details).

In practice, there are challenges associated with this approach:

• If the expert policy is suboptimal, than the resulting policy is a mixture of somewhat
arbitrary policies that have the expert policy in their convex hull. In practice, a
practitioner can pick the best policy in this set and pick the corresponding reward
function.

• This approach relies on being able to compute an optimal policy given a reward
function, which may be expensive or impossible.

• There is an infinite number of reward functions with the same optimal policy, and an
infinite number of stochastic policies that can match feature counts.

20-4

Algorithm 2: Apprenticeship learning via linear feature IRL

Initialize policy π0
for i = 1, 2, . . . do

Find the reward function weights w such that the teacher maximally
outperforms all previous controllers via the following program

maximize
w

maximize
C

C

subject to wTµ(π∗ | s0 = s) ≥ wTµ(π | s0 = s) + C ,

∀π ∈ {π0, π1, . . . , πi−1},∀s ,
∥w∥2 ≤ 1

Find optimal policy πi for current w
if C ≤ ϵ/2 then

return πi

5.1 Maximum entropy inverse RL

To address the problem of ambiguity, Ziebart el al. [ZMBD08] introduced Maximum En-
tropy (MaxEnt) IRL. Consider the collection of all possible H-step trajectories in a deter-
ministic MDP. For a linear reward model, a policy is completely specified by its distribution
over trajectories. Given this, which policy should we choose given a set of k distributions?

Again, assume that the reward function is a linear function of the features R(s) =
wTx(s). Denoting trajectory j as τj , we can write the feature counts for this trajectory as

µτj =
∑
si∈τj

x(si) .

Averaging over m trajectories, we can write the average feature counts

µ̃ =
1

k

k∑
j=1

µτj .

The principle of maximum entropy [Jay57] motivates choosing a distribution with no addi-
tional preferences beyond matching the feature expectations in the demonstration dataset

maximize
P

−
∑
τ

P (τ) logP (τ)

subject to
∑
τ

P (τ)µτ = µ̃ ,∑
τ

P (τ) = 1 .

In the case of linear rewards, this is equivalent to specifying the weights w that yield
a policy with the maximum entropy, constrained to matching the feature expectations.
Maximizing the entropy of the distribution over the paths subject to the feature constraints

20-5

Algorithm 3: Maximum entropy IRL

Backward pass
Set Zsi,0 = 0
Recursively compute for N iterations

Zai,j =
∑
k

P (sk | si, ai,j) exp(R(si | w))Zsk .

Zsi =
∑
ai,j

Zai,j .

Local action probability computation

P (ai, j | si) =
Zai,j

Zsi

Forward pass
Set Dsi,t = P (si = sinitial)
Recursively compute for t = 1 to N

Dsi,t+1 =
∑
ai,j

∑
k

Dsk,tP (ai,j | si)P (sk | ai,jsi) .

Summing frequencies

Dsi =
∑
t

Dsi,t

from observed data implies we maximize the likelihood of the observed data under the
maximum entropy (exponential family) distribution

P (τj | w) =
1

Z(w)
exp

(
wTµτj

)
=

1

Z(w)
exp

∑
si∈τj

wTx(si)

 ,

with
Z(w, s) =

∑
τs

exp
(
wTµτs

)
.

This induces a strong preference for low cost paths, and equal cost paths are equally prob-
able. Many MDPs of interest are stochastic. In these cases, the distribution over paths
depends on both the reward weights and on the dynamics

P (τj | w,P(s′ | s, a)) ≈
exp

(
wTµτj

)
Z(w,P(s′ | s, a))

∏
si,ai∈τj

P(si+1 | si, ai).

The weights w are learned by maximizing the likelihood of the data

w∗ = argmax
w

L(w) = argmax
w

∑
examples

logP (τ | w) .

20-6

The gradient is the difference between expected empirical feature counts and the learner’s
expected feature counts, which can be expressed in terms of the expected state visitation
frequencies

∇L(w) = µ̃−
∑
τ

P (τ | w)µτ = µ̃−
∑
si

D(si)x(si) ,

where D(si) denotes the state visitation frequency. This approach has been influential, as
it provides a principle way to select among the many possible reward functions. However,
the original formulation of the algorithm requires knowledge of the transition model or the
ability to simulate and act in the world to gather samples of the transition model.

References

[AN04] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforce-
ment learning. In International Conference on Machine Learning, page 1, 2004.

[Jay57] Edwin T Jaynes. Information theory and statistical mechanics. Physical Review,
106(4):620, 1957.

[RGB11] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In International
Conference on Artificial Intelligence and Statistics, pages 627–635, 2011.

[ZMBD08] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maxi-
mum entropy inverse reinforcement learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 8, pages 1433–1438, 2008.

20-7

	Goal of this lecture
	Introduction
	Imitation learning
	Learning from demonstration

	Behavioral cloning
	DAGGER: Dataset aggregation

	Inverse reinforcement learning (IRL)
	Linear feature reward inverse RL

	Apprenticeship learning
	Maximum entropy inverse RL

