DDA4230 Reinforcement learning Policy optimization

Lecture 18
Lecturer: Guiliang Liu Scribe: Jing Dong

1 Goal of this lecture

In this lecture we discuss how to implement the stochastic gradient once we have an esti-
mator.

Suggested reading: Trust region policy optimization, by Schulman, Levine, Moritz, Jor-
dan, and Abbeel; Proximal policy optimization algorithms, by Schulman, Wolski, Dhariwal,
Radford, and Klimov;

2 Recap: Policy gradient

In the past lectures, we have covered many value-based methods, which require us to learn
the @ or V functions. The policy optimization methods learn the policy 7 directly. There
are a few reasons why this may be preferred over value based methods. We list a few here.

e The value function V' does not prescribe us actions. It would also need the dynamic
model to compute the actions.

e For the @ function, we may not be able to efficiently solve arg max, Q(s,a). This is
especially challenging for continuous and high-dimensional action spaces.

Before moving on to policy optimization methods, we first review the policy gradi-
ent method. Let 7 denote a state-action sequence sg,aq,..., S, ar, and we overload the
notation to let r(7) = ZtT:O r(st,at). Then for a policy m parameterized by 6 and the
corresponding occupancy measure P™ (1), we desire to find

mgbeE [P™ (T)r(7)] .

Taking gradient (denoted as g) with respect to 6 gives us

T
r(1)) Vglog(mg (ar | s1))

t=1

T
r(7)Vglog (ZP(StH | st,ai) - o (ay | St))

t=1

This gradient is unbiased and we do not need access to the dynamic model to compute this.
There are several different related expressions for the policy gradient, which have the form

g=E

Z‘I’tve log g (at \ St)] ;

t=0

where W, might be one of the following:

18-1

1. Y 2 « the total reward of the trajectory;

2. Q7 (s¢,a) : the action value function;

3. > g,y : the reward following action ay;

4. >0, v —b(st) : the reward following action a; with a baseline;
5. A™ (st,a¢) = the advantage function;

6. 7+ V7 (s¢41) — V™ (s¢) : the TD residual.

The latter formulas use the definitions A™ (s¢,a¢) = Q" (s¢,ar) — V7™ (s¢), which is the
advantage function.

In policy optimization methods, the data samples we have collected may not be corre-
sponding to the policy we wish to optimize. In this case, some special handling is needed so
that the gradient estimates can be unbiased. Let 71 be the policy we are currently following
and 79 be the policy we want to optimize. Let them be parameterized by 61, 02, respectively.
Then we can use importance sampling to re-weight our objective as

max e [mr(ﬂ] .

3 Trust region policy optimization (TRPO)

Using the gradients to optimize our policy requires us to provide a step size (a.k.a learning
rate). In the classic supervised learning setting or in the optimization literature, having a
bad step size may not be terrible. This is because the next update can partially correct the
error in the previous steps. In reinforcement learning and particularly policy optimization,
this is going to be a greater problem. When the step size steps are too far, we obtain
a terrible policy. This indicates that the next batch of data will be collected under this
terrible policy. Then it becomes not clear how to recover short of going back and shrinking
the step size.

One method of choosing the step size is by line search. The procedure is summarized
as follows

1. Calculate the initial loss and initialize the step size to be a large value;

2. Update the parameter with the gradients under the current step size can calculate the
new loss;

3. Decrease the value of step size until we have found a new loss that is less than the
initial loss.

This simple method helps us to make gradient descent at a relatively good step size. How-
ever, it may be expensive to compute so many gradients (evaluation along the line). More-
over, this methods ignores the quality of our gradients (our gradients may be of poor quality
as it is stochastic). In fact, if the noise of the gradient is large, choose the best step sizes

18-2

along the line could be analogous to choosing the optimum among the random signals (the
multi-hypothesis test).

An alternative method is the trust region method. Intuitively, it finds us a point where
it is a good approximation of the actual descent gradient within a “trust region”.

Let us first denotes P(7 | 6) = P(so) - I P(st+1 | st,at)mg(ar | s¢). Then the trust
region method finds us the next parameter 8+436 through solving the following maximization
problem.

-
a 00
e 9

subject to dki, (P(7|0)||P(7]0 + 00)) < €,

where dkr, denotes the KL divergence, g is our gradient estimate, and € is a parameter
we can set. Here, the change of the objective function is estimated by assuming that the
objective function in this neighbouring area is linear.

Using the expression of the KL divergence, we have

d1(P(;0)||P(r50 + 60)) = > P(r;6)log P(i(g;f)m

=" P(r;0)log P<30)1;11T:1_01 mo (@ | 5¢) P (5141 | 50, ar)
. P (so) [1i=0 mo+s0 (ar | st) P (se41 | st,a0)

T[T, 7o (ar | s1)

HtT:_ol TO+66 (Clt | St) .

= ZP(T; 0) log

With M samples, this term can be approximated by the sample average and we may rewrite
the maximization problem to be

-
00
A
. 1 g (a |)
subject to — log—————— <
M 2 To+o0 (a | 8)

(s,a)

This maximization problem with the constraint can be hard to enforce given complicated
policies like neural networks. Therefore we would need to approximate the KL divergence
further for a feasible objective. This is done through second order approximation with fisher
matrix Fp.

dxr, (mo(a | s)||mosse(a | s)) ~ 667 Z Vylogm(a | s)Vglogme(a|s)" | 56
(s,a)~0

= 060" Fpd0.
And now our maximization problem is simplified to
max ¢g' 6

60
subject to 60" Fy00 < ¢,

18-3

which is a linear objective quadratic constrained optimization problem and could be solved
analytically using the Karush—Kuhn—Tucker conditions (though the algorithm will not rely
on the analytical solution).

Thus the final TRPO objective is given as

m(a | s)
Tod(a | s)
Constraint: Er_, [dkr, (7||7o1a)] < €,

Surrogate loss: max L(m) = Er_, AT (s a)
T

where A denotes the advantage function. This corresponds to a general policy gradient
form we have mentioned earlier.

The last remaining issue is that 6 can be high-dimensional. In this case building and
inverting fisher matrix Fy can be impractical. Thus the TRPO method approximately solve
the constraint to avoid the expense caused by exact computation. Though the approxima-
tion alleviate the computation overhead, it still requires second order information such as
Hessian matrix. This can still be expensive both in computation and space.

4 Proximal policy optimization (PPO)

Even though the TRPO method has invested a great effort into making the constraint set
feasible, they may still be hard to enforce in complicated policy architectures. For example,
one with stochasticity like dropout or with parameter sharing. Moreover, the computation
overhead can still be high.

The PPO method enforces a “soft” constraint instead, which means that during the
training process, the constraint could be violated. It adds a proximal value to the objective
function. The objective is the following

iy (at | St)

L =E.
() = B | T 50

AWOld (87 G/) - BdKL (7r901d) 7T9)
The 3 can be fixed or adaptively chosen (or simply set to 0). One reason why one may wish
to adaptively choose [is because it can be hard to find one § that performs well across
different problems.

Another surrogate objective proposed by PPO stems from the observation that the

policy’s performance can fluctuate greatly when p,(0) = % changes too quickly.
old V1=

Thus it limits p to a range of [1 — €, 1 + €] such that no abrupt updates to the policy will
be made. The surrogate objective is then written as

LCLIP(Tr) = E [min{p;(0)A(s,a),clip(p(0),1 — €, 1+ €)A(s,a)}] .

We take the minimum of the constrained and unconstrained objectives such that our final
objective is a lower bound of the unclipped objective. With this scheme, we only ignore
the change in probability ratio when it would make the objective improve, and we include
it when it makes the objective worse.

The two objective functions L(7) and L¢P () mentioned above can be used separately
or together.

18-4

algorithm avg. normalized score

No clipping or penalty -0.39
Clipping, e = 0.1 0.76
Clipping, ¢ = 0.2 0.82
Clipping, € = 0.3 0.70
Adaptive KL diarg = 0.003 0.68
Adaptive KL diarg = 0.01 0.74
Adaptive KL diarg = 0.03 0.71
Fixed KL, 5 =0.3 0.62
Fixed KL, g = 1. 0.71
Fixed KL, g = 3. 0.72
Fixed KL, g = 10. 0.69

Table 1: Results from continuous control benchmark. Average normalized scores (over 21 rums of the
algorithm, on 7 environments) for each algorithm / hyperparameter setting . 8 was initialized at 1.

5 Implementations of policy optimization

Although we have summarized the main algorithmic contributions of PPO and TRPO, there
exist many different practical implementations of them. The implementation details indeed
influence the algorithm performance by a lot. For example, one may choose to clip the learnt
value function just like how we clip p in [1 — ¢€,1 + €] and to scale the rewards obtained
from the environment. The findings are summarized in a paper focusing on implementation
details [EIST20)].

In a later paper [HMDH20], two common design choices in PPO are revisited, precisely
I) clipped policy probability ratio for regularization and II) to parameterize policy action
space by continuous Gaussian or discrete softmax distribution. They first identify three
failure cases in PPO and proposed replacements for these two designs.

The failure modes are:

e On continuous action spaces, standard PPO is unstable when rewards vanish outside
bounded support.

e On discrete action spaces with sparse high rewards, standard PPO often gets stuck
at suboptimal actions. The policy is sensitive to initialization when there are locally
optimal actions close to initialization.

We encourage the students to obtain the high-level ideas of TRPO and PPO and try them
on different tasks to obtain a better understanding of the algorithm. These algorithms are
also good choices of first-to-try algorithms when one is presented with a task for policy-based
reinforcement learning.

Acknowledgement

This lecture notes takes reference from Pieter Abbeel’s lecture notes on reinforcement learn-
ing.

18-5

References

[EIST20] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus
Janoos, Larry Rudolph, and Aleksander Madry. Implementation matters in
deep policy gradients: A case study on PPO and TRPO. In International
Conference on Learning Representations, 2020.

[HMDH20] Chloe Ching-Yun Hsu, Celestine Mendler-Diinner, and Moritz Hardt. Revisiting
design choices in proximal policy optimization. 2020.

18-6

	Goal of this lecture
	Recap: Policy gradient
	Trust region policy optimization (TRPO)
	Proximal policy optimization (PPO)
	Implementations of policy optimization

