
DDA4230 Reinforcement learning Policy gradient

Lecture 17

Lecturer: Guiliang Liu Scribe: Ke Li

1 Goal of this lecture

Starting from this lecture we discuss general reinforcement learning that can have continuous
state and action spaces.

In this lecture we discuss Monte-Carlo methods via policy function approximation and
policy gradient.
Suggested reading: Chapter 13 of Reinforcement learning: An introduction;

2 Policy-based and value-based algorithms

2.1 Value-based methods

Value-based algorithms include Q-learning, temporal-difference learning, and policy and
value iteration

• These algorithms learn the values of actions V (s) or Q(s, a) and then selected action
a based on the action values π(s) = argmaxa∈AQ(s, a);

• The policy does not exist without the action value estimates Q(s).

Concerns about value-based methods.

• The vanilla approaches can only address discrete action spaces due to the argmaxa∈A
operation. However, in practice, the action space is usually continuous.

• Computing the action value functions Q(s, a) for all state-action pair is costly when
the action and state spaces are large or continuous.

• The policy implied by Q-Learning is deterministic and ϵ-greedy exploration can be
quite inefficient.

• It implicitly and indirectly improves the policy by improving the estimates of the val-
ues functions. However, we would think intuitively that improving the policy directly
would be more efficient.

These motivate policy-based methods.

17-1

2.2 Policy-based methods

Policy gradient is the canonical approach for policy-based learning.

• Policy-based method directly parameterizes the policy function πθ(s) without calcu-
lating the value functions.

• We use the notation θ ∈ Rd for the policy’s parameter vector. We then write

π(a | s,θ) = P(at = a | st = s,θ)

as the probability that action a is taken given that the environment is in state s with
parameter θ.

• A value function may still be used to learn the policy parameter, but is not required
for action selection (will talk about it later in the actor-critic algorithm).

3 Policy approximation with parametrization

3.1 Discrete case

If the action space is discrete, then a natural way to parameterize a policy is to form param-
eterized state-action preferences h(s, a,θ) for each (s, a) pair and use a softmax distribution

π(a | s,θ) = exp(h(a, s,θ))∑
a′ exp(h(a

′, s,θ))
. (softmax in action preferences)

• The state-action preference measures how the policy πθ prefer action a given state s.
The actions with the highest preferences in each state are given the highest probabil-
ities of being selected.

• The action preferences h(a, s,θ) can be parameterized arbitrarily. For example, it can
simply be the linear combinations of features (as for the feature vectors x(a, s), see
Chapter 9 in Sutton and Barto’s Book)

h(a, s,θ) = θTx(a, s) .

3.2 Continuous case

For continuous case, the policy can be defined as the normal probability density over a
real-valued scalar action, with mean and standard deviation given by parametric function
approximators

π(a | s,θ) = 1

σ(s,θσ)
√
2π

exp(−(a− µ(s,θµ))
2

2σ(s,θσ)2
) .

• We divide the policy’s parameter vector into two parts, θ = [θµ,θσ].

• One possible way to parametrize the mean and standard deviation is

µ(s,θ) = θT
µxµ(s) , σ(s,θ) = exp(θT

σxσ(s)) ,

where xσ(s) and xµ(s) are feature vectors discussed in Chapter 9 in Sutton and
Barto’s book.

17-2

So far, we have constructed the policy function approximation for both discrete and con-
tinuous cases.

3.3 Advantages of using parametrization

• It handles both discrete and continuous action spaces.

• It could be deterministic or stochastic. Action preference h(a, s,θ) enables the se-
lection of actions with arbitrary probabilities. If the optimal policy is deterministic,
then the preferences value will be driven infinitely higher than all other actions.

• The choice of policy parametrization is sometimes a good way of injecting prior knowl-
edge about the desired form of the policy into the reinforcement learning system.

• Policy gradient has stronger convergence guarantees than value based method because
of the smooth change in the probability.

4 Policy gradient

4.1 Policy gradient theorem

Recall the gradient descent algorithm

θt+1 = θt + ̂α∇J(θ)

where J(θ) is our objective function and α is the learning rate. The objective J(θ) have
a variety of definitions, including the episodic setting, the continuing setting, and the dis-
counted continuing setting. These settings will correspond to a varieties of definitions of
the occupancy measure.

We take discrete state and action spaces as an example. For continuous spaces, under
mild assumptions we can replace the summation over actions and states by the integration
over actions and states.

For the episodic case, where the episode terminates at some terminal state set, we define
the objective function J(θ) as

J(θ) = V πθ(s0) =
∑
s∈S

ρπθ(s | s0)r(s) ,

where s0 is the starting state, V πθ(s0) is the value function for πθ, and r(s) = Ea∼π[R(s, a)]
is the expected reward at s following π. The occupancy measure ρπθ(s | s0) = 1

T

∑T
t=0 P(st =

s | s0, πθ), where T is a random variable denoting the index of the terminal step.
For the continuing case, where the process continues infinitely, we define the objective

17-3

function J(θ) as the averaged reward over the time steps.

J(θ) = lim
T→∞

1

T

T∑
t=1

E[rt | s0, πθ]

= lim
t→∞

E[rt | s0, πθ]

=
∑
s

ρπθ(s | s0)r(s)

= V πθ(s0) ,

where the occupancy measure ρπθ(s | s0) = limt→∞ P(st = s | s0, πθ) is the stationary
distribution of the Markov chain under policy πθ.

For the discounted case where γ < 1, we define the objective function J(θ) as the
expected discounted return

J(θ) = V πθ(s0) =
∑
s∈S

ρπθ(s | s0)r(s) ,

where the occupancy measure ρπθ(s | s0) = (1− γ)
∑∞

t=0 γ
tP(st = s | s0, πθ).

The policy gradient theorem states that

∇θJ(θ) ∝
∑
s∈S

ρπθ(s | s0)
∑
a∈A

Qπθ(s, a)∇θπθ(a | s)

= Eπ [Q
πθ(s, a)∇θ log πθ(a | s)] .

4.2 Proof of policy gradient theorem

We prove the episodic case and leave other cases and the continuous setting to the reader.
For the proof of the continuing case, see Chapter 13.6 in Sutton and Barto’s book. When
the context is clear we write πθ into π.
Proof: We have

∇θV
π(s)

= ∇θ

(∑
a∈A

πθ(a | s)Qπ(s, a)
)

=
∑
a∈A

(
∇θπθ(a | s)Qπ(s, a) + πθ(a | s)∇θQ

π(s, a)
)

Derivative product rule.

=
∑
a∈A

(
∇θπθ(a | s)Qπ(s, a) + πθ(a | s)∇θ

∑
s′,r

P(s′, r | s, a)(r + V π(s′))
)

Expand Qπ with future state value.

=
∑
a∈A

(
∇θπθ(a | s)Qπ(s, a) + πθ(a | s)

∑
s′,r

P(s′, r | s, a)∇θV
π(s′)

)
P(s′,r|s,a) and r are independent of θ

=
∑
a∈A

(
∇θπθ(a | s)Qπ(s, a) + πθ(a | s)

∑
s′

P(s′ | s, a)∇θV
π(s′)

)
Because P(s′|s,a)=

∑
r P(s′,r|s,a)

17-4

Then,

∇θV
π(s) =

∑
a∈A

(
∇θπθ(a | s)Qπ(s, a) + πθ(a | s)

∑
s′

P(s′ | s, a)∇θV
π(s′)

)
.

This equation has a nice recursive form (see the red parts!) and the future state value
function V π(s′) can be repeated unrolled by following the same equation.

We consider the following visitation sequence and label the probability of transitioning
from state s to state x with policy πθ after k step as ρπ(s→ x, k)

s
a∼πθ(·|s)−−−−−−→ s′

a∼πθ(·|s′)−−−−−−→ s′′
a∼πθ(·|s′′)−−−−−−→

• When k = 0, ρπ(s→ s, k = 0) = 1;

• When k = 1, we scan through all possible actions and sum up the transition proba-
bilities to the target state: ρπ(s→ s′, k = 1) =

∑
a∈A πθ(a | s)P(s′ | s, a);

• Imagine that the goal is to go from state s to x after k + 1 steps, we can write it as
ρπ(s → x, k + 1) =

∑
s′ ρ

π(s → s′, k)ρπ(s′ → x, 1). That is, we first arrive at s′ after
k step and we go 1 step further.

Then we go back to unroll the recursion of ∇θV
π(s). Denote

ϕ(s) =
∑
a∈A
∇θπθ(a | s)Qπ(s, a)

for simplicity. We have

∇θV
π(s)

=ϕ(s) +
∑
a

πθ(a | s)
∑
s′

P(s′ | s, a)∇θV
π(s′)

=ϕ(s) +
∑
s′

∑
a

πθ(a | s)P(s′ | s, a)∇θV
π(s′)

=ϕ(s) +
∑
s′

ρπ(s→ s′, 1)∇θV
π(s′)

=ϕ(s) +
∑
s′

ρπ(s→ s′, 1)(ϕ(s′) +
∑
s′′

ρπ(s′ → s′′, 1)∇θV
π(s′′))

=ϕ(s) +
∑
s′

ρπ(s→ s′, 1)ϕ(s′) +
∑
s′′

ρπ(s→ s′′, 2)∇θV
π(s′′)

=ϕ(s) +
∑
s′

ρπ(s→ s′, 1)ϕ(s′) +
∑
s′′

ρπ(s→ s′′, 2)ϕ(s′′) +
∑
s′′′

ρπ(s→ s′′′, 3)∇θV
π(s′′′)

= . . .Repeatedly unroll the parts of ∇θV
π(·)

=
∑
x∈S

∞∑
k=0

ρπ(s→ x, k)ϕ(x) .

17-5

By plugging it into the objective function J(θ), we have

∇θJ(θ) = ∇θV
π(s0) Starting from a random state s0

=
∑
s

∞∑
k=0

ρπ(s0 → s, k)ϕ(s) Denote η(s)=
∑∞

k=0 ρ
π(s0→s,k)

=
∑
s

η(s)ϕ(s)

=
(∑

s

η(s)
)∑

s

η(s)∑
s η(s)

ϕ(s) Normalize η(s),s∈S to be a probability distribution

∝
∑
s

η(s)∑
s η(s)

ϕ(s)
∑

s η(s) is a constant

=
∑
s

ρπ(s | s0)
∑
a

∇θπθ(a|s)Qπ(s, a) . ρπ(s|s0)= η(s)∑
s η(s)

is the stationary distribution

The policy gradient can then be written as

∇θJ(θ) ∝
∑
s∈S

ρπ(s | s0)
∑
a∈A

Qπ(s, a)∇θπθ(a | s)

=
∑
s∈S

ρπ(s | s0)
∑
a∈A

Qπ(s, a)πθ(a | s)
∇θπθ(a | s)
πθ(a | s)

=
∑
s∈S

ρπ(s | s0)
∑
a∈A

πθ(a | s)Qπ(s, a)
∇θπθ(a | s)
πθ(a | s)

= Eπ[Q
π(s, a)∇θ log πθ(a | s)] ,

where Eπ refers to trajectory sampling Es∼dπ ,a∼πθ
according to π. 2

For the proof in the continuous case, see Chapter 13.6 in Sutton and Barto’s book.

5 Policy gradient algorithms

5.1 REINFORCE (episodic Monte-Carlo policy-gradient control)

Now we discuss how to compute the gradient ∇θJ(θ) algorithmically. We can sample N
trajectories following the policy π and use the empirical mean to estimate the gradient

∇θJ(θ) = Eπ[Q
π(s, a)∇θ log πθ(a | s)] .

• For Qπ(s, a), we can use return Gt =
∑

γtrt to estimate.

• For ∇θ log πθ(a | s), it depends on the form of the policy.

The process is pretty straightforward. The discount γt in the last step is usually omitted
in practice.

17-6

Algorithm 1: REINFORCE (Monte-Carlo method)

Initialize the policy parameter θ
for each episode do

Sample one trajectory on policy πθ: s0, a0, r0, s1, a1, . . . , sT
for each t = 0, 1, . . . , T do

Gt ←
∑T

t′=t γ
t′−trt′

θ ← θ + αγtGt∇θ log πθ(at | st)

5.2 REINFORCE with baselines

One problem of policy gradient method is high variance. (why? Click to see a very intuitive
explanation.) A natural solution is to subtract a baseline b(s) from Qπ, i.e.,

∇θJ(θ) ∝
∑
s∈S

ρπ(s | s0)
∑
a∈A

(Qπ(s, a)−b(s))∇πθ(a | s) .

The baseline can be any function, even a random variable, as long as it does not depend on
the action a. ∑

a

b(s)∇π(a | s, θ) = b(s)∇
∑
a

π(a | s, θ) = b(s)∇1 = 0 .

The expectation value does not change. The update rule that we end up with is a new
version of REINFORCE that includes a general baseline

θ ← θ + αγt(Gt − b(st))∇θ log πθ(at | st) .

Figure 1: Comparison of REINFORCE and REINFORCE with baseline

As shown in the figure above (source: Sutton and Barto’s book, Chapter 13), adding a
baseline can learn much faster. This post nicely explained why a baseline works for reducing
the variance.

17-7

https://www.quora.com/Why-does-the-policy-gradient-method-have-a-high-variance
https://www.quora.com/Why-does-the-policy-gradient-method-have-a-high-variance
https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/

One natural choice for the baseline is an estimate of the state value V̂ (s,w), where
w ∈ Rd is a weight vector to be learned. We can use the same method as we adopted in
learning θ to learn w. The complete process is as follows. We have two inputs:

• A differentiable policy parametrization πθ(a | s);

• A differentiable state value function parametrization V̂ (s,w).

Algorithm 2: REINFORCE with baseline

Initialize the policy parameter θ and w at random.
for each episode do

Sample one trajectory under policy πθ: s0, a0, r0, s1, a1, r1 . . . , sT
for each t = 1, 2, . . . , T do

Gt ←
∑T

t′=t γ
t′−trt′

δ ← Gt − V̂ (st,w)
w ← w + αwδ∇wV̂ (st,w)
θ ← θ + αθγ

tδ∇θ log πθ(at | st)

References

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction.
MIT Press. 2018.

[2] John Schulman, et al. “High-dimensional continuous control using generalized advan-
tage estimation.” ICLR 2016.

[3] David Silver, et al. “Deterministic policy gradient algorithms.” ICML. 2014.

[4] Adrien, E. Intuitive explanation of policy gradient. 2018. Available here.

[5] Lilian, W. Policy gradient algorithms. 2018. Available here.

Acknowledgement

This lecture notes partially use material from Reinforcement learning: An introduction.

17-8

https://towardsdatascience.com/an-intuitive-explanation-of-policy-gradient-part-1-reinforce-aa4392cbfd3c
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

	Goal of this lecture
	Policy-based and value-based algorithms
	Value-based methods
	Policy-based methods

	Policy approximation with parametrization
	Discrete case
	Continuous case
	Advantages of using parametrization

	Policy gradient
	Policy gradient theorem
	Proof of policy gradient theorem

	Policy gradient algorithms
	REINFORCE (episodic Monte-Carlo policy-gradient control)
	REINFORCE with baselines

