
DDA4230 Reinforcement learning Deep Q-learning

Lecture 16

Lecturer: Baoxiang Wang Scribe: Baoxiang Wang

1 Goal of this lecture

In this lecture we discuss approaches for feature representations using neural networks and
deep Q-learning.
Suggested reading: Chapter 6 and 11 of Reinforcement learning: An introduction; All
cited papers;

2 Recap: Q-learning in discrete state space

Recall that Q-learning is an off-policy method for TD-style control. Despite that it is off-
policy, we do not need to rely on importance sampling. Instead, we can maintain the Q
estimates and bootstrap the value of the best future action.

Q(st, at)← Q(st, at) + αt

(
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)

)
.

This gives rise to Q-learning, which is detailed in Algorithm 1. As we take a maximum over
the actions at the next state, this action is not necessarily the same as the one we would
derive from the current policy. Therefore, Q-learning is considered an off-policy algorithm.

Algorithm 1: Q-learning with ϵ-greedy exploration

Input: ϵ, α, γ
Initialize Q(s, a) for all s ∈ S, a ∈ A arbitrarily except Q(terminal, ·) = 0
π ← ϵ-greedy policy with respect to Q
for each episode do

t← 1
Set s1 as the starting state
while until episode terminates do

Sample action at from policy π(st)
Take action at and observe reward rt and next state st+1

Q(st, at)← Q(st, at) + α(rt + γmaxa′ Q(st+1, a
′)−Q(st, at))

π ← ϵ-greedy policy with respect to Q
t← t+ 1

return Q, π

In continuous state spaces, we can no longer update Q(st, at) in a tabular style. We
instead resort to its parametrization.

16-1

3 Value-based deep reinforcement learning

In this lecture, we introduce three popular value-based deep reinforcement learning (RL)
algorithms: Deep Q-network (DQN) [1], Double DQN [2] and Dueling DQN [3].
All the three neural architectures are able to learn successful policies directly from high-
dimensional inputs, e.g. pre-processed pixels from video games, by using end-to-end rein-
forcement learning, and they all achieved a level of performance that is comparable to a
professional human games tester across a set of 49 names on Atari 2600 [4].

Convolutional neural networks (ConvNets) [5] are used in these architectures for feature
extraction from pixel inputs, as an example of feature representations. Understanding the
mechanisms behind feature extraction via ConvNets can help better understand how DQN
works. The Stanford CS231N course website contains wonderful examples and introduction
to ConvNets. Here, we direct the reader to the following link for more details on ConvNets
http://cs231n.github.io/convolutional-networks/. The remaining of this section will
focus on generalization in RL and value-based deep RL algorithms.

3.1 Recap: Action value function approximation

In the previous lecture, we use parameterized function approximators to represent the action
value function Q(s, a). If we denote the set of parameters as w, the Q-function in this
approximation setting is represented as Q̂(s, a,w).

When we have access to an oracle Q(s, a), the approximate Q-function can be learned
by minimizing the mean-squared error between the true action value function Q(s, a) and
its approximated estimates

J(w) = E[(Q(s, a)− Q̂(s, a,w))2] .

We can use stochastic gradient descent (SGD), similar to policy gradient, to find a local
minimum of J by sampling the gradients with respect to the parameters w and updating
w as

∆w = −1

2
α∇wJ(w) = αE[(Q(s, a)− Q̂(s, a,w))∇wQ̂(s, a,w)] , (1)

where α is the learning rate. In general, the true action value function Q(s, a) is unknown,
so we substitute the Q(s, a) in Equation (1) with an approximate learning target.

In Monte-Carlo methods, we use an unbiased return Gt as the substitute target for
episodic MDPs

∆w = α(Gt − Q̂(s, a,w))∇wQ̂(s, a,w) .

For SARSA, we instead use bootstrapping and present a biased TD target r+γQ̂(s′, a′,w),
which leverages the current function approximation value, as

∆w = α(r + γQ̂(s′, a′,w)− Q̂(s, a,w))∇wQ̂(s, a,w) ,

where a′ is the action taken at the next state s′ and γ is a discount factor. For Q-learning,
we use a biased maximized TD target r + γmaxa′ Q̂(s′, a′,w) and update w as

∆w = α(r + γmax
a′

Q̂(s′, a′,w)− Q̂(s, a,w))∇wQ̂(s, a,w) .

In subsequent sections, we will introduce how to approximate Q̂(s, a,w) by using a deep
neural network and learn neural network parameters w via end-to-end training.

16-2

http://cs231n.github.io/convolutional-networks/

Figure 1: Illustration of the deep Q-network [1]. The input to the network consists of an
84 × 84 × 4 pre-processed image, followed by 3 convolutional layers and 2 fully connected
layers with a single output for each valid action. Each hidden layer is followed by a rectifier
nonlinearity (ReLU) [6].

3.2 Generalization: Deep Q-network (DQN)

The performance of linear function approximators highly depends on the quality of features.
In general, handcrafting an appropriate set of features can be difficult and time-consuming.
To scale up to making decisions in real large domains (e.g. large state space) and enable
automatic feature extraction, neural networks are used as function approximators [1].

3.2.1 DQN architecture

An illustration of the DQN architecture is shown in Figure 1. The network takes pre-
processed pixel image from the Atari game environment (see 3.2.2 for pre-processing) as
inputs, and outputs a vector containing Q-values for each valid action. The pre-processed
pixel input is a summary of the game state s, and a single output unit represents the Q̂
function for a single action a. Collectively, the Q̂ function can be denoted as Q̂(s,w) ∈ R|A|

(recall thatA is discrete). For simplicity, we will still use the notation Q̂(s, a,w) to represent
the estimated action value for (s, a) in the following paragraphs.

For the details of the architecture, the input consists of an 84× 84× 4 image. The first
convolutional layer has 32 filters of size 8 × 8 with stride 4 and convolves with the input
image, followed by a rectifier nonlinearity (ReLU) [6]. The second hidden layer convolves
64 filters of 4 × 4 with stride 2, again followed by a rectifier nonlinearity. This is followed
by a third convolutional layer that has 64 filters of 3× 3 with stride 1, followed by a ReLU.

16-3

The final hidden layer is a fully connected layer with 512 rectifier (ReLU) units. The output
layer is a fully connected linear layer.

3.2.2 Pre-processing raw pixels

The raw Atari 2600 frames are of size (210 × 160 × 3), where the last dimension is corre-
sponding to the RGB channels. The pre-processing step adopted in [1] aims at reducing the
input dimensionality and dealing with some artifacts of the game emulator. We summarize
the pre-processing as follows.

• Single frame encoding: To encode a single frame, the maximum value for each pixel
color value over the frame being encoded and the previous frame is returned. In other
words, we return a pixel-wise max-pooling of the 2 consecutive raw pixel frames.

• Dimensionality reduction: Extract the Y channel, also known as luminance, from the
encoded RGB frame and rescale it to (84× 84× 1).

The above pre-processing is applied to the 4 most recent raw RGB frames and the encoded
frames are stacked together to produce the input (of shape (84×84×4)) to the Q-network.
Stacking together the recent frames as game state is also a way to transform the game
environment into a world closer to Markovian. Exceptions are like Montezuma’s Revenge.

3.2.3 Training algorithm for DQN

The use of large deep neural network function approximators for learning action value
functions has often been avoided in the past since theoretical performance guarantees are
not available and learning and training tend to be very unstable. In order to use large
nonlinear function approximators and scale online Q-learning, DQN introduced two major
changes, including the use of experience replay, and a separate target network. The full
algorithm is presented in Algorithm 2. Essentially, the Q-network is learned by minimizing
the mean squared error

J(w) = E(st,at,rt,st+1)[(y
DQN
t − Q̂(st, at,w))2] ,

where yDQN
t is the one-step ahead learning target

yDQN
t = rt + γmax

a′
Q̂(st+1, a

′,w−) ,

where w− represents the parameters of the target network, and the parameters w of the
online network are updated by sampling gradients from minibatches of past transition tuples
(st, at, rt, st+1). Note that though the learning target is computed from the target network
with w−, the targets yDQN

t are considered to be fixed when making updates to w.)

Experience replay The agent’s experiences (the transitions) at each time step et =
(st, at, rt, st+1) is stored in a fixed-sized dataset Dt = {e1, . . . , et}, known as the replay
buffer. The replay buffer is used to store the most recent k = 1 million experiences (see
Figure 2 for an illustration of replay buffer). The Q-network is updated by SGD with

16-4

Figure 2: Illustration of replay buffer. The transition (s, a, r, s′) is uniformly sampled
from the replay buffer for updating Q-network.

sampled gradients from minibatch data. Each transition sample in the minibatch is sampled
uniformly at random from the pool of stored experiences, (s, a, r, s′) ∼ Uniform(D). This
approach has the following advantages over standard online Q-learning.

• Greater data efficiency: Each step of experience can be potentially used for many
updates, which improves data efficiency.

• Remove sample correlations: Randomizing the transition experiences reduces the cor-
relations between consecutive samples and therefore reduces the variance of updates
and stabilizes the learning.

• Avoiding oscillations or divergence: The behavior distribution is averaged over many
of its previous states and transitions, smoothing out learning and avoiding oscillations
or divergence in the parameters. Note that when using experience replay, it is required
to use off-policy method, e.g. Q-learning, because the current parameters are different
from those used to generate the samples.

Limitation of experience replay : The replay buffer does not differentiate important
transitions or informative transitions and it always overwrites with the recent transitions due
to fixed buffer size. Similarly, the uniform sampling from the buffer gives equal importance
to all stored experiences. A more sophisticated replay strategy, Prioritized Replay, has
been proposed in [7], which replays important transitions more frequently, and therefore
the agent learns more efficiently.

Target network To further improve the stability of learning and deal with the non-
stationary learning targets, a separate target network is used for generating the targets yj
(see Algorithm 2) in the Q-learning update. More specifically, for every C update steps the
target network Q̂(s, a,w−) is updated by copying the parameters’ values (w− = w) from
the online network Q̂(s, a,w), and the target network remains unchanged and generates
targets yj for the following C updates. This modification makes the algorithm more stable
compared to standard online Q-learning. C = 10000 in the original DQN.

16-5

Algorithm 2: Deep Q-learning

Initialize replay memory D with a fixed capacity
Initialize action value function Q̂ with random weights w
Initialize target action value function Q̂ with weights w− = w
for episode k = 1, . . . ,K do

Observe initial frame x1 and pre-process frame to get state s1
for time step t = 1, . . . , T do

Select action at =

{
random action with probability ϵ

argmaxa Q̂(st, a,w) otherwise
Execute action at in emulator and observe reward rt and image xt+1

pre-process st, xt+1 to get st+1, and store transition (st, at, rt, st+1) in D
Sample uniformly a random minibatch of N transitions
{(sj , aj , rj , sj+1)}j∈[N] from D
Set yj = rj if episode ends at step j + 1, otherwise set
yj = rj + γmaxa′ Q̂(sj+1, a

′,w−)
Perform a stochastic gradient descent step on
J(w) = 1

N

∑N
j=1(yj − Q̂(sj , aj ,w))2 with respect to w

Every C steps reset w− = w

3.2.4 Training details

In the original DQN paper [1], a different network (or agent) was trained on each game with
the same architecture, learning algorithm and hyperparameters. The authors clipped all
positive rewards from the game environment at +1 and all negative rewards at −1, which
makes it possible to use the same learning rate across all different games. For games where
there is a life counter (e.g. Breakout), the emulator also returns the number of lives left in
the game, which was then used to mark the end of an episode during training by explicitly
setting future rewards to zeros. They also used a simple frame-skipping technique (known
as action repeat): the agent selects actions on every 4-th frame instead of every frame,
and its last action is repeated on skipped frames. This reduces the frequency of decisions
without impacting the performance too much and enables the agent to play roughly 4 times
more games during training.

RMSProp (see https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_
lec6.pdf) was used in [1] for training DQN with minibatches of size 32. During training,
they applied ϵ-greedy policy with ϵ linearly annealed from 1.0 to 0.1 over the first million
steps, and fixed at 0.1 afterwards. The replay buffer was used to store the most recent 1
million transitions. For evaluation at test time, they used ϵ-greedy policy with ϵ = 0.05.

3.3 Reducing bias: Double deep Q-network (DDQN)

The max operator in DQN (see Algorithm 2) uses the same network values both to select
and to evaluate an action. This setting makes it more likely to select overestimated values
and resulting in overoptimistic target value estimates. Van Hasselt et al. also showed in
[2] that the DQN algorithm suffers from substantial overestimations in some games in the

16-6

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Atari 2600. To prevent overestimation and reduce bias, we can decouple the action selection
from action evaluation.

Recall that in double Q-learning, two action value functions are maintained and learned
by randomly assigning transitions to update one of the two functions, resulting in two
different sets of function parameters, denoted here as w and w′. For computing targets,
one function is used to select the greedy action and the other to evaluate its value

yDDQN
t = rt + γQ̂(st+1, argmax

a′
Q̂(st+1, a

′,w),w′) .

Note that the action selection (argmax) is due to the function parameters w, while the
action value is evaluated by the other set of parameters w′.

The idea of reducing the overestimation by decoupling action selection and action evalu-
ation in computing targets can also be extended to deep Q-learning. The target network in
DQN architecture provides a natural candidate for the second action value function, with-
out introducing additional networks. Similarly, the greedy action is generated according
to the online network with parameters w, but its value is estimated by the target network
with parameters w−. The resulting algorithm is referred as double DQN [2], which just
replaces the computing of the target in Algorithm 2 by the following update target

yDDQN
t = rt + γQ̂(st+1, argmax

a′
Q̂(st+1, a

′,w),w−) .

The update to the target network stays unchanged from DQN, and remains a periodic copy
of the online network w. The rest of the DQN algorithm remains intact.

3.4 Decoupling value and advantage: Dueling network

3.4.1 Dueling network architecture

Before we delve into dueling architecture, we first introduce an important quantity, the
advantage function, which relates the state value and the action value functions (assume
following the same policy π)

Aπ(s, a) = Qπ(s, a)− V π(s) .

Recall V π(s) = Ea∼π(s)[Q
π(s, a)], thus we have Ea∼π(s)[A

π(s, a)] = 0. Intuitively, the
advantage function subtracts the value of the state from the Q-function to get a relative
measure of the importance of each action.

Like in DQN, the dueling network is also a neural network function approximator for
learning the Q-function. Differently, it approximates the Q-function by decoupling the value
function and the advantage function. Figure 3 illustrates the dueling network architecture
and the DQN for comparison.

The lower layers of the dueling network are convolutional as in the DQN. However,
instead of using a single stream of fully connected layers for Q-value estimates, the dueling
network uses two streams of fully connected layers. One stream is used to provide value
function estimate given a state, while the other stream is for estimating advantage function
for each valid action. Finally, the two streams are combined in a way to produce and

16-7

Figure 3: Single stream Deep Q-network (top) and the dueling Q-network (bottom). The
dueling network has two streams to separately estimate the state value V (s) and the advan-
tage A(s, a) for each action. The green output module implements Equation (4) to combine
the two streams. Both networks output the Q-value for each action.

approximate the Q-function. As is in DQN, the output of the network is a vector of Q-
values, one for each action.

Note that since the inputs and the final outputs (combining two streams) of the dueling
network are the same as that of the original DQN, the training algorithm (Algorithm 2)
introduced above for DQN and for double DQN can also be applied here to train the dueling
architecture. The separated two-stream design is based on the following observations or
intuitions from the authors.

• For many states, it is unnecessary to estimate the value of each possible action choice.
In some states, the action selection can be of great importance, but in many other
states the choice of action has no repercussion on what happens next. On the other
hand, the state value estimation is of significant importance for every state for a
bootstrapping based algorithm like Q-learning.

• Features required to determine the value function may be different than those used
to accurately estimate action benefits.

Combing the two streams of fully connected layers for Q-value estimate is not a trivial
task. This aggregating module (shown in green lines in Figure 3), in fact, requires very
thoughtful design, which we will discuss in the next part.

3.4.2 Q-value estimation

From the definition of the advantage function, we have Qπ(s, a) = Aπ(s, a) + V π(s), and
Ea∼π(s)[A

π(s, a)] = 0. Furthermore, for a deterministic policy (commonly used in value-

16-8

based deep RL) a∗ = argmaxa′∈AQ(s, a′), it follows that Q(s, a∗) = V (s) and hence
A(s, a∗) = 0. The greedily selected action has zero advantage in this case.

Now consider the dueling network architecture in Figure 3 for function approximation.
Denote the scalar output value function from one stream of the fully connected layers as
V̂ (s,w,wV), and denote the vector output advantage function from the other stream as
A(s, a,w,wA). We use w here to denote the shared parameters in the convolutional layers,
and use wV and wA to represent parameters in the two different streams of fully connected
layers. Then, a simple way to design the aggregating module is by following the definition

Q̂(s, a,w,wA,wV) = V̂ (s,w,wV) +A(s, a,w,wA) . (2)

The main problem with this simple design is that Equation (2) is unidentifiable. Given Q̂,
we cannot recover V̂ and A uniquely. For example, adding a constant to V̂ and subtracting
the same constant from A gives the same Q-value estimates. The unidentifiable issue is
echoed by poor performance observed in practice.

To make the Q-function identifiable, recall that in the deterministic policy case discussed
above, we can force the advantage function to have zero estimate at the chosen action. Then,
we have

Q̂(s, a,w,wA,wV) = V̂ (s,w,wV) +
(
A(s, a,w,wA)−max

a′∈A
A(s, a′,w,wA)

)
. (3)

For a deterministic policy, a∗ = argmaxa′∈A Q̂(s, a′,w,wA,wV) = argmaxa′∈AA(s, a′,w,wA).
Equation (3) gives Q̂(s, a∗,w,wA,wV) = V̂ (s,w,wV). Thus, the stream V̂ provides an
estimate of the value function, and the other stream A generates advantage estimates.

The authors in [3] also proposed an alternative aggregating module that replaces the
max operator with a mean operator

Q̂(s, a,w,wA,wV) = V̂ (s,w,wV) +
(
A(s, a,w,wA)− 1

|A|
∑
a′

A(s, a′,w,wA)
)
. (4)

Although this design in some sense loses the original semantics of V̂ and A, the author
argued that it improves the stability of learning. The advantages only need to change
as fast as the mean, instead of having to compensate any change to the advantage of the
optimal action. Therefore, the aggregating module in the dueling network [3] is implemented
following Equation (4). When acting, it suffices to evaluate the advantage stream to make
decisions.

The advantage of the dueling network lies in its capability of approximating the value
function efficiently. This advantage over single-stream Q-networks grows when the number
of actions is large, and the dueling network achieved state-of-the-art results on Atari games
as of 2016.

3.5 Distributional Q-learning

An alternative approach to mitigate the overestimation effect is to write both the Q-function
and the target into distributions in the Bellman optimality equation. Recall that the Q-
value is defined as the expectation of the stochastic return (denote as Zπ to be distinguished

16-9

from G)

Qπ(s, a)
def
= Eπ[Z

π(s, a)] = Eπ[Gt|st = s, at = a] = Eπ

[∞∑
k=0

γkrt+k+1|st = s, at = a

]
.

In the distributional setting, we can take away the expectation and consider the full distri-
bution of the random variable Zπ. The distributional Bellman operator T π for Z is

T πZ(s, a)
D
= R(s, a) + γZ(s′, a′) ,

where s′ ∼ P(· | s, a), a′ ∼ π(·, s′).
We are interested in the TD error between random variable Zπ and T πZπ. To measure

the distance between random variables, we adopt the p-Wasserstein metric dp.

Definition 1 Given two random variables U , V with their respective cumulative density
functions FU , FV , the Wasserstein metric is defined as

dp(U, V) =

(∫ 1

0
|F−1

U (u)− F−1
V (u)|pdu

)1/p

.

It is shown that T π is a contraction operator under Wasserstein metric [9].

Lemma 1 T π : Z → Z is a γ-contraction in dp.

Note that however the contraction property of T π does not hold under KL divergence or
total variation.

In general, optimality operators who have a fixed point Z∗ = T Z∗ does not guarantee
the convergence of the iteration Zk+1 ← T Zk. When the optimal policy is unique, this
contraction operator guarantees a convergence. Despite that this assumption might not
hold in general in practice, practical performance of the algorithm has been satisfying on
some tasks.

Lemma 2 If the optimal policy is unique, then the iteration Zk+1 ← T Zk converges to
Zπ∗

.

In its implementations, Z will be represented by a histogram. The update of the distribu-
tional Q-learning on the histogram is then

Z(st, at)← (1− αt)Z(st, at) + αtΠC(Rt + γZ(st+1, πz(st+1))) ,

where ΠC is the projection operator to assign the probability density into the histogram
bins and αt is the step size.

References

[1] Mnih, Volodymyr, et al. “Human-level control through deep reinforcement learning.”
Nature 518.7540 (2015): 529.

16-10

[2] Van Hasselt, Hado, Arthur Guez, and David Silver. “Deep reinforcement learning with
double Q-learning.” AAAI. Vol. 16. 2016.

[3] Wang, Ziyu, et al. “Dueling network architectures for deep reinforcement learning.”
arXiv preprint arXiv:1511.06581 (2015).

[4] Bellemare, Marc G., et al. “The Arcade learning environment: An evaluation platform
for general agents.” J. Artif. Intell. Res.(JAIR) 47 (2013): 253-279.

[5] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification with
deep convolutional neural networks.” Advances in neural information processing sys-
tems. 2012.

[6] Nair, Vinod, and Geoffrey E. Hinton. “Rectified linear units improve restricted Boltz-
mann machines.” Proceedings of the 27th international conference on machine learning
(ICML-10). 2010.

[7] Schaul, Tom, et al. “Prioritized experience replay.” arXiv preprint arXiv:1511.05952
(2015).

[8] Hessel, Matteo, et al. “Rainbow: Combining Improvements in Deep Reinforcement
Learning.” arXiv preprint arXiv:1710.02298 (2017).

[9] Bellemare, Marc G and Dabney, Will and Munos, Rémi. “A distributional perspective
on reinforcement learning” International Conference on Machine Learning (2017).

Acknowledgement

This lecture notes partially use material from Reinforcement learning: An introduction and
CS234: Reinforcement learning from Stanford. Figures are from the cited papers.

16-11

	Goal of this lecture
	Recap: Q-learning in discrete state space
	Value-based deep reinforcement learning
	Recap: Action value function approximation
	Generalization: Deep Q-network (DQN)
	DQN architecture
	Pre-processing raw pixels
	Training algorithm for DQN
	Training details

	Reducing bias: Double deep Q-network (DDQN)
	Decoupling value and advantage: Dueling network
	Dueling network architecture
	Q-value estimation

	Distributional Q-learning

