
DDA4230 Reinforcement learning Value function approximation

Lecture 15

Lecturer: Guiliang Liu Scribe: Baoxiang Wang

1 Goal of this lecture

In this lecture we investigate methods where the value function is approximated by linear
in some known feature vector or by a neural network.
Suggested reading: Chapter 9, 10 and 11 of Reinforcement learning: An introduction;

2 Value function approximation

So far we have represented value function by a lookup table where each state has a corre-
sponding entry, V (s), or each state-action pair has an entry, Q(s, a). However, this approach
might not generalize well to problems with very large state and action spaces, or in other
cases we might prefer quickly learning approximations over converged values of each state.
A popular approach to address this problem is via value function approximation (VFA)

V π(s) ≈ V̂ (s,w) or Qπ(s, a) ≈ Q̂(s, a,w) .

In the approximation, w is usually referred to as the parameter or weights of our function
approximator. Some choices for function approximators are listed below.

• Linear combinations of features

• Neural networks

• Decision trees

• Nearest neighbors

• Fourier and wavelet basis

In this lecture, we will explore two popular classes of differentiable function approxima-
tors: Linear feature representations and neural networks. The reason for demanding a
differentiable function is by the feasibility of the derivation of the algorithms.

3 Linear feature representations

In linear function representations, we use a feature vector to represent a state

x(s) = (x1(s), x2(s), . . . , xd(s))
T ,

15-1



where d is the dimensionality of the feature space. We then approximate our value functions
using a linear combination of features as

V̂ (s,w) = x(s)Tw =
d∑

j=1

xj(s)wj .

The error of the approximation is defined on the measure space of the occupancy measure,
which denotes the cumulative probability that a state is visited under π

ρπ(s) = lim
T→∞

∑T
t=0 γ

tP(st = s | π)∑T
t=0 γ

t
.

The quadratic objective function (also known as the loss function) of the approximation
error is then defined as

J(w) = Es∼ρπ(s)

[
(V π(s)− V̂ (s,w))2

]
.

3.1 Gradient descent

A common technique to minimize the above objective function is gradient descent. Figure
1 provides a visual illustration. We start at some particular spot x0, corresponding to
some initial value of our parameter w. We then evaluate the gradient at x0, which tells us
the direction of the steepest increase in the objective function. To minimize our objective
function, we take a step along the negative direction of the gradient vector and arrive at
x1. This process is repeated until we reach some convergence criteria.

Figure 1: Visualization of gradient descent. We wish to reach the center point where our
objective function is minimized. We do so by following the red arrows, which points in the
opposite direction of our evaluated gradient.

15-2



Mathematically, this can be summarized as

∇wJ(w) =

(
∂J(w)

∂w1
,
∂J(w)

∂w2
, . . . ,

∂J(w)

∂wn

)
, compute the gradient

∆w = −1

2
α∇wJ(w) , compute an update step using gradient descent

w← w +∆w , take a step towards the local minimum

where α is the learning rate.

3.2 Stochastic gradient descent

In practice, gradient descent is not considered a sample efficient optimizer and stochastic
gradient descent (SGD) is used more often. Although the original SGD algorithm referred to
updating the weights using a single sample, due to the convenience of vectorization, people
often refer to gradient descent on a minibatch of samples as SGD as well. In minibatch
SGD, we sample a minibatch of past experiences, compute our objective function on that
minibatch, and update our parameters using gradient descent on the minibatch. Let us now
go back to several algorithms we covered in previous lectures and see how value function
approximations can be incorporated.

3.3 Monte-Carlo policy evaluation with linear VFA

Algorithm 1: Monte-Carlo policy evaluation with linear VFA

Initialize w = 0, R(s) = 0 ∀s, k = 1
while true do

Sample k-th episode (sk,1, ak,1, rk,1, sk,2, . . . , sk,Hk
) given π

for t = 1, . . . ,Hk do
if first visit to s in episode k then

Append
∑Hk

j=t rk,j to R(st)

w← w + α(avg(R(st))− V̂ (st,w))x(st)

k = k + 1

Algorithm 1 is a modification of first-visit Monte-Carlo policy evaluation, while we
replace our value function with our linear VFA. We also make a note that, although our
return, avg(R(st)), is an unbiased estimate, it is with a high variance, which makes the
algorithm hard to converge in practice. The algorithm can be modified to its every-visit
variant by removing the if condition.

Recall that the mean squared error of a linear VFA for a particular policy π relative to
the true value is

J(w) =
∑
s∈S

ρπ(s)(V π(s)− V̂ π(s,w))2 .

15-3



Lemma 1 Monte-Carlo policy evaluation with linear VFA converges to the weights wMC

with minimum mean squared error.

J(wMC) = min
w

∑
s∈S

ρπ(s)(V π(s)− V̂ π(s,w))2 .

3.4 Temporal-difference methods with linear VFA

Recall that in the tabular setting, we approximate V π via bootstrapping and sampling and
update V π(s) by

V π(s)← V π(s) + α(r + γV π(s′)− V π(s)) ,

where r+γV π(s′) represents our TD target. Using linear VFA, we replace V π with V̂ π and
our update equation becomes

w← w + α(r + γV̂ π(s′,w)− V̂ π(s,w))∇wV̂
π(s,w)

= w + α(r + γV̂ π(s′,w)− V̂ π(s,w))x(s) .

In value function approximation, although our target is a biased and approximated esti-
mate of the true value V π(s), linear TD(0) will still converge to some global approximate
optimum.

Lemma 2 TD(0) policy evaluation with VFA converges to the weights wTD which is opti-
mum up to 1/(1− γ) of the minimum mean squared error.

J(wTD) ≤
1

1− γ
min
w

∑
s∈S

ρπ(s)(V π(s)− V̂ π(s,w))2 .

We omit the proofs here and encourage interested readers to look at An analysis of
temporal-difference learning with function approximation by Tsitsiklis and Van Roy (1997)
or its follow-up studies for some in-depth discussion.

3.5 Control using VFA

Similar to VFAs for the state value function, we can also use function approximators for
action value functions. That is, we let Q̂(s, a,w) ≈ Qπ(s, a). We may then interleave policy
evaluation, by approximating using Q̂(s, a,w), and policy improvement, by ϵ-greedy policy
improvement. To be more concrete, we write out this mathematically.

First, we define our objective function J(w) as

J(w) = Eπ

[
(Qπ(s, a)− Q̂π(s, a,w))2

]
.

Similar to what we did earlier in policy evaluation, we may then use either gradient descent
or stochastic gradient descent to minimize the objective function. For example, for a linear

15-4



action value function approximator, this can be summarized as

x(s, a) = (x1(s, a), x2(s, a), . . . , xn(s, a))
T , action value features

Q̂(s, a,w) = x(s, a)Tw , action value linear in features

J(w) = Eπ

[
(Qπ(s, a)− Q̂π(s, a,w))2

]
, objective function

−1

2
∇wJ(w) = Eπ

[
(Qπ(s, a)− Q̂π(s, a,w))∇wQ̂

π(s, a,w)
]

= Eπ

[
(Qπ(s, a)− Q̂π(s, a,w))x(s, a)

]
, compute the gradient

∆w = −1

2
α∇wJ(w)

= α(Qπ(s, a)− Q̂π(s, a,w))x(s, a) , compute the update

w← w +∆w . take a step of gradient descent

For Monte Carlo methods, we substitute our target Qπ(s, a) with a return Gt. That is,
our update becomes

∆w = α(Gt − Q̂(s, a,w))∇wQ̂(s, a,w) .

For SARSA, we substitute our target with a TD target

∆w = α(r + γQ̂(s′, a′,w)− Q̂(s, a,w))∇wQ̂(s, a,w) .

For Q-learning, we substitute our target with a maximum TD target

∆w = α(r + γmax
a′

Q̂(s′, a′,w)− Q̂(s, a,w))∇wQ̂(s, a,w) .

We note that because our use of value function approximations to carry out the Bellman
backup operator, convergence is not guaranteed. We refer users to look for Baird’s coun-
terexample for a more concrete illustration. The rest of the algorithms have contraction
guarantees, which is summarized in Table 1.

Algorithm Tabular Linear VFA Nonlinear VFA

Monte-Carlo control Yes (Yes) No

SARSA Yes (Yes) No

Q-learning Yes No No

Table 1: Summary of convergence of Control Methods with VFA. A “(Yes)” means the
result chatters around some near-optimal value function.

4 Neural networks

Although linear VFAs often work well given the right set of features, it can also be difficult to
hand-craft such feature set. Neural networks provide a much richer function approximation
class that is able to directly go from states without requiring an explicit specification of
features.

15-5



Figure 2: A generic feedforward neural network with 4 input units, 2 output units, and 2
hidden layers.

Figure 2 illustrates a generic feedforward neural network. The network in the figure has
an output layer consisting of two output units, an input layer with four input units, and
two hidden layers, which are layers that are neither input nor output layers. A real-valued
weight is associated with each link. The units are typically semi-linear, meaning that they
compute a weighted sum of their input signals and then apply a nonlinear function to the
result. This is usually referred to as activation functions. Neural networks with a single
hidden layer can have the “universal approximation” property, which has been demonstrated
both empirically and theoretically. Complicated functions can be approximated with a
hierarchical composition of multiple hidden layers.

Some theory and recent results of neural networks have been applied to solve bandit
and reinforcement learning problems. We refer readers of interest to conduct Google search
on those recent advances.

Acknowledgement

This lecture notes partially use material from Reinforcement learning: An introduction and
CS234: Reinforcement learning from Stanford.

15-6


