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1 Goal of this lecture

In this lecture we will introduce exploration in discrete Markov decision processes and several
algorithms with exploration techniques. The idea of upper confident bounds is extended
to upper confident value iteration (UCVI, also known as UCRL). The idea of Thompson
sampling is extended to posterior sampling for reinforcement learning (PSRL).
Suggested reading: Chapter 3 and 8 of Reinforcement learning: An introduction; Chap-
ter 7 of Reinforcement learning: Theory and algorithms; (More) Efficient Reinforcement
Learning via Posterior Sampling by Osband, Van Roy, and Russo; Optimistic posterior
sampling for reinforcement learning: Worst-case regret bounds by Agrawal and Jia.

2 Recap: Model-based reinforcement learning

A model-based approach does not know the model, but can maintain an estimation of it
and use the estimation when calculating the value function. It is then very straightforward
to consider replacing P with P̂ for some estimation P̂ , where the most simple way to obtain
P̂ is to use the empirical distribution of the state transitions collected from the trajectories.

Assume that 0 ≤ r ≤ 1. Let ε ∈ (0, 1
1−γ ). There is an absolute constant c such that

once one have collected at least

N ≥ γ

(1− γ)4
n2m log(cnm/δ)

ε2

samples for each (s, a) ∈ S × A pair, then we could estimate P̂ and Q̂π such that with
probability at least 1− δ,

∥P (· | s, a)− P̂ (· | s, a)∥1 ≤ (1− γ)2ε

for every (s, a) pair, and
∥Qπ − Q̂π∥∞ ≤ ε

for every policy π.
The number N of samples needed could be reduced to

N ≥ c

(1− γ)3
nm log(cnm/δ)

ε2
,

if we only desire the accurate estimate on the optimal policy and value, i.e., ∥Q∗−Q̂∗∥∞ ≤ ε
and ∥Q∗ − Qπ̂∗∥∞ ≤ ε. This improvement is minimax optimal for estimating the optimal
policy and value in this way.

The natural question remaining is that if we are able to obtain N samples for each (s, a)
pair so as to fulfill the condition of the lemma. The answer is, unfortunately, no, in
general.
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3 Exploration in discrete MDPs

While the optimal policy could be directly computed once we have a good estimate of the
transition kernel and the reward function, estimating these variables using the empirical
average requires the number N of samples to be large in every (s, a) pair. This is not
possible in general, but it motivates us to incorporate exploration into our algorithm, to
increase the number of visits towards those states with less samples. In fact, much of
reinforcement learning is concerned with finding a near optimal policy (or obtaining near
optimal reward) in settings where the MDPs is not known to the learner. We will study
these questions in a few different models of how the agent obtains information about the
unknown underlying MDP.

In each of these settings, we are interested in understanding two things: the number
of samples required to find a near optimal policy, i.e., the sample complexity ; and the
cumulative (sublinear) regret achieved in the process of finding a near optimal policy.

Ultimately, we are interested to extend the results to cases where number of states and
actions is large, or, possibly, countably or uncountably infinite. This could be achieved in
a variety of ways, including approximation through a deep neural network.

3.1 Episodic discrete MDPs

In the episodic setting, in every episode, the learner acts for some finite number of steps,
starting from a fixed starting state s0 ∼ ρ0, the learner observes the trajectory, and the state
resets to s0 ∼ ρ0. This episodic model of feedback is applicable to both the finite-horizon
and infinite-horizon settings.

• Finite horizon MDPs. Here, each episode lasts for H steps, and then the state is reset
to s0 ∼ ρ0.

• Infinite horizon MDPs. Even for infinite horizon MDPs it is natural to work in an
episodic model for learning, where each episode terminates after a finite number of
steps. Here, it is often natural to assume either the agent can terminate the episode
at will or that the episode will terminate at each step with probability 1 − γ. After
termination, we again assume that the state is reset to s0 ∼ ρ0. Note that, if each
step in an episode is terminated with probability 1− γ, then the observed cumulative
reward in an episode of a policy provides an unbiased estimate of the infinite-horizon,
discounted value of that policy. In this setting, we are often interested in either
the number of episodes it takes to find a near optimal policy, which is a probably
approximately correct (PAC) guarantee on the sample complexity, or we are interested
in a regret guarantee.

The episodic setting is challenging in that the agent has to engage in some exploration
in order to gain information at the relevant state, and therefore is a suitable environment
for us to discuss exploration-based topics. This exploration must be strategic, in the sense
that simply behaving randomly will not lead to information being gathered quickly enough.

In this lecture notes we assume the MDP to be with a finite horizon and a fixed start
state s0. We discuss the problem in the episodic setting. In every episode k ∈ [K], the
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learner acts for H step starting from a fixed starting state s0 and, at the end of the H-
length episode, the state is reset to s0. It is straightforward to extend this setting where
the starting state is sampled from a distribution, i.e., s0 ∼ ρ0.

The goal of the agent is to minimize the expected cumulative regret over K episodes

RK = E

[
KV ∗(s0)−

K−1∑
k=0

H−1∑
h=0

r(skh, a
k
h)

]
,

where the expectation is with respect to the randomness of the MDP environment and any
randomness of the agent’s policy and (skh, a

k
h) denotes the state-action pair in the h-th step

of the k-th episode.

3.2 UCB value iteration

Without loss of generality, we present the UCB value iteration algorithm (UCVI) on the
non-stationary setting. The reward function rh and the probability transition kernel Ph are
assumed to change over the horizon [H]. The estimation of rh and Ph up to the collection
of the first k − 1 episodes are denoted by r̂kh and P̂ k

h , respectively. As usual, the former
is estimated by the empirical average of the reward and the latter is estimated by the
frequency of the transition.

The exploration is encouraged by a UCB exploration bonus term

√
4H2 log(nmHK/δ)

Nk
h (s,a)

,

which is similar to the UCB algorithm in multi-armed bandits. A regret of
√
K could be

obtained with standard arguments in probabilities.

Theorem 1 Without loss of generality assume that rh(s, a) is deterministic and known and
is between 0 to 1. Taking δ = 1/KH, the regret of UCVI

RT ≤ 10
√

n2mH4K log(nmH2K2) .

This regret bound could be improved to
√
nmH4K+n2mH3, which is smaller than the

above theorem by a factor of
√
n when K is asymptotically large.

The proofs could be found in Chapter 7 of Reinforcement learning: Theory and algo-
rithms and the referred papers thereof. We leave the proof of the theorems as an extended
reading to the readers.

3.3 Posterior sampling for reinforcement learning

In discrete RL, most theoretical results are induced by the optimism principal and some
variants of the upper confident bounds. In bandits, an alternative perspective to implement
exploration is to use Thompson sampling, that is, to sample a bandit environment from a
posterior distribution in every time step. We wonder if a similar approach is possible in
discrete RL, that is, to sample an MDP in every episode in episodic MDPs. The answer
is yes. Posterior sampling for reinforcement learning (PSRL) was proposed in 2013 and
was improved in 2017 and thereafter. See suggested reading for more references. In similar
settings, PSRL achieves a regret at most O(

√
n2mH3K log(nmHK).
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Algorithm 1: UCVI

Input: δ: confidence level
while k ≤ K − 1 do

Estimate the transition kernel

P̂ k
h (s

′ | s, a) =
Nk

h (s, a, s
′)

Nk
h (s, a)

Compute the exploration bonus UCBk
h(s, a, δ) as

∞ , Nk
h (s, a) = 0 ,

1

Nk
h (s, a)

∑
k′≤k−1

rk
′

h 1{(sk
′

h , a
k′
h ) = (s, a)}+

√
4H2 log(nmHK/δ)

Nk
h (s, a)

, Nk
h (s, a) > 0 ;

For all states s ∈ S, k ∈ [K], V k
H(s)← 0

for h = H − 1, . . . , 0 do
For all (s, a) pairs, update the action value estimate

Q̂k
h(s, a) = min{UCBk

h(s, a, δ) +
∑
s′∈S

P̂ k
h (s

′ | s, a)V̂ k
h+1(s

′), H}

For all s ∈ S, update the state value estimate

V̂ k
h (s) = max

a
Q̂k

h(s, a)

For all s ∈ S, update the policy

πk
h(s) = argmax

a
Q̂k

h(s, a)

return Q̂K−1
h (s, a), V̂ K−1

h (s), πK−1
h (s) for all h ∈ [H]

Theorem 2 The regret of PSRL

RT ≤
√
30n2mH3K log(nmHK) .

Note that this regret is a minimax regret (which is the one we usually encounter). It is
distinguished from the Bayesian regret.

A point worth noting is that in practice, PSRL and TS are observed to outperform
UCRL and UCB, respectively, in general, by a significant margin.

3.4 Stationary v.s. non-stationary MDPs

In analysis of discrete MDPs (in and out of this course), it is natural for us to study
both the stationary and the non-stationary models, where we typically assume stationary
dynamics in the infinite-horizon setting and time-dependent dynamics in the finite-horizon
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Algorithm 2: PSRL

Input: Prior p(θ0) on the distribution of P 0
T and P 0

R
Initialize θ = θ0
while k ≤ K − 1 do

Sample P k
T (; θ), P

k
R(; θ) from p(θ | {τk′}k′≤k−1)

Run value iteration on P k
T , P

k
R and receive policy πk

Sample trajectory τk with the policy πk
Update the posterior probability distribution of θk+1 by

p(θk+1 | {τk′}k′≤k) =
p({τk′}k′≤k | θ)p(θ)∫

θ′ p({τk′}k′≤k | θ′)p(θ′)dθ′

setting. From a theoretical perspective, the finite-horizon, time-dependent setting is often
more amenable to analysis, where optimal statistical rates often require simpler arguments.
However, we should note that from a practical perspective, time-dependent MDPs are
rarely utilized because they lead to policies and value functions that consume O(H) larger
memory to be stored in a computer than those in the stationary setting. In practice, we
often incorporate temporal information t directly into the definition of the state, which leads
to more compact value functions and policies (when coupled with function approximation
methods, which attempt to represent both the values and policies in a more compact form).
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