
DDA4230 Reinforcement learning Iterative methods

Lecture 10

Lecturer: Guiliang Liu Scribe: Baoxiang Wang

1 Goal of this lecture

In this lecture we will introduce the iterative approaches for discrete MDPs, including policy
evaluation, policy iteration, value iteration, and the their connections to Q-learning. These
iterative will eventually extends to deep settings and are thus very important in RL.
Suggested reading: Chapter 3, 4 and 5 of Reinforcement learning: An introduction;
Chapter 1 and 2 of Reinforcement learning: Theory and algorithms.

2 Recap: Solving discrete MDPs directly

For policy evaluation, by the Bellman equation we can obtain the value function as

V = (I − γP)−1r .

When P and r are unknown, a model-based methods is to estimate them before computing
V .

For value optimization, by the Bellman optimality equation it amounts to solve

minimize
V

eTV

subject to (I − γPj)V − rj ≥ 0 , j = 1, . . . ,m ,

where e is the all-one vector. The dual of the linear program describes policy optimization

maximize
λ1,...,λm

∑
j

λT
j rj

subject to
∑
j

(I − γP T
j)λj = e ,

λj ≥ 0, j = 1, . . . ,m .

When P and r are unknown, a model-based methods is to estimate them before computing
V and λi.

3 Iterative policy evaluation

The iterative policy evaluation algorithm constructs a contraction when γ < 1, which gives
an arbitrarily close value function estimation of a given policy. As such, when the reward
function is deterministic and γ < 1, the error of the estimation decreases at a rate of γt (the
update V (s) =

∑
a π(a | s)

∑
s′,r P(s′, r | s, a) [r + γV (s′)] forms a contraction, such that

given V, V ′, we have ∥BV −BV ′∥∞ ≤ ∥V − V ′∥∞ where B denotes the update operator).

10-1

Algorithm 1: Iterative policy evaluation

Input: Policy π, threshold ϵ > 0
Output: Value function estimation V ≈ V π

Initialize ∆ > ϵ and V arbitrarily
while ∆ > ϵ do

∆ = 0
for s ∈ S do

v = V (s)
V (s) =

∑
a π(a | s)

∑
s′,r P(s′, r | s, a) [r + γV (s′)]

∆ = max(∆, |v − V (s)|)

3.1 Dynamic programming

It worth mention that for a finite horizon MDP, the iterative policy evaluation algorithm
requires the iteration to go through the index with a non-stationary value function. This
process is also known as dynamic programming. These two algorithms look surprisingly
similar, to the point that it is hard to tell the difference. For dynamic programming, by the
Bellman equation,

Vt(s) = R(s) + γ
∑
s′∈S

P(s′ | s, π)Vt+1(s
′) , ∀ t = 0, . . . ,H − 1 ,

VT (s) = 0 .

(1)

For episodic MDPs, R and P can be stochastic and we run this process for many episodes
(usually denoted as T/H episodes with horizon H).

These equations immediately lend themselves to a dynamic programming solution whose
pseudo-code is outlined in Algorithm 2. The algorithm takes as input a finite horizon Markov
reward process S,P,R (which is defined as a Markov chain with reward but without a
policy), and computes the value function for all states and at all times.

Algorithm 2: Iterative policy evaluation with finite horizon

Input: S,P,R, T
For all states s ∈ S, VT (s)← 0
t← T − 1
while t ≥ 0 do

For all states s ∈ S, Vt(s) =
∑

a π(a | s)
∑

s′,r P(s′, r | s, a) [r + γVt+1(s
′)]

t← t− 1
return Vt(s) for all s ∈ S and t = 0, . . . , T

4 Iterative policy search

The policy evaluation algorithm immediately renders itself to a brute force algorithm called
policy search to find the optimal value function V ∗ and an optimal policy π∗, as described

10-2

in pseudo-code in Algorithm 3. The algorithm takes as input an infinite horizon MDP
M = (S,A,P,R, γ) with arbitrary initial state distribution ρ0 and a tolerance ϵ for accuracy
of policy evaluation, and returns the optimal value function and an optimal policy.

Algorithm 3: Policy search

Input: M, ϵ
Π← All stationary deterministic policies of M
π∗ ← Randomly choose a policy π ∈ Π
V ∗ ← POLICY EVALUATION (M, π∗, ϵ)
for π ∈ Π do

V π ← POLICY EVALUATION (M, π, ϵ)
if V π(s) ≥ V ∗(s) ∀ s ∈ S then

V ∗ ← V π

π∗ ← π

return V ∗(s), π∗(s) for all s ∈ S

It is clear that Algorithm 3 always terminates as it checks all |Π| = |A||S| = mn de-
terministic stationary policies (Recall that we are assuming that there exists an optimal
policy and in this case there is a deterministic stationary policy that is optimal). Thus the
run-time complexity of this algorithm is O(|A||S|). It is possible to prove the correctness of
the algorithm when ϵ = 0, i.e. when in each iteration the policy evaluation is done exactly.
In practice ϵ is set to a small number such as from 10−9 to 10−12. We encourage the reader
to work out the questions and try implementing the examples.

Lemma 1 Algorithm 3 returns the optimal value function and an optimal policy when
ϵ = 0.

Proof: Let π∗ be an optimal policy, and thus V π∗
(s) = V ∗(s) for all states s ∈ S. Since

the algorithm checks every policy in Π, it means that π∗ must get selected at some iteration
of the algorithm. Thus for the policies considered in future iterations the value function
can no longer strictly increase. Future iterations may select a different policy with the same
optimal value function, thus completing the proof. 2

For the MDP examples shown in LN3, we leave it to the reader to discuss (a) How many
deterministic stationary policies does the agent have? (b) If γ < 1, is the optimal policy
unique? (c) If γ = 1, is the optimal policy unique?

4.1 Policy iteration

We now discuss a more efficient algorithm than policy search called policy iteration. The
algorithm is a straightforward application of the Bellman operator, which states that given
any stationary policy π, we can find a deterministic stationary policy that is no worse than
the existing policy. In particular the theorem also applies to deterministic policies. This
simple step has a special name called policy improvement, whose pseudo-code is presented
in Algorithm 4.

The output of Algorithm 4 is always guaranteed to be at least as good as the policy π
corresponding to the input value function V π, and represents a greedy attempt to improve

10-3

Algorithm 4: Policy improvement

Input: V π

π̂(s)← argmax
a∈A

[
R(s, a) + γ

∑
s′∈S P(s′ | s, a)V π(s′)

]
, ∀ s ∈ S

return π̂(s) for all s ∈ S

the policy. When performed iteratively with the policy evaluation algorithm (Algorithm
1), this gives rise to the policy iteration algorithm. The pseudo-code of policy iteration is
outlined in Algorithm 5.

Algorithm 5: Policy iteration

Input: M, ϵ
π ← Randomly choose a policy π ∈ Π
while true do

V π ← POLICY EVALUATION (M, π, ϵ)
π∗ ← POLICY IMPROVEMENT (M, V π)
if V π∗

= V π then
break

else
π ← π∗

V ∗ ← V π

return V ∗(s), π∗(s) for all s ∈ S

Note that the algorithm will always terminate as there are a finite number of stationary
deterministic policies, as a conclusion of the following lemma. This also establishes the
worst-case run-time complexity of the algorithm.

Lemma 2 Consider an infinite horizon MDP with γ < 1. The following statements hold.

1. When Algorithm 5 is run with ϵ = 0, it finds the optimal value function and an optimal
policy.

2. If the policy does not change during a policy improvement step, then the policy cannot
improve in future iterations.

3. The value functions corresponding to the policies in each iteration of the algorithm
form a non-decreasing sequence for every s ∈ S.

5 Value iteration

Value iteration is yet another technique that can be used to compute the optimal value
function and an optimal policy given a known MDP. To motivate this method we will need
the following theorem.

10-4

Suppose we are now given an MDPM = (S,A,P,R, γ) and consider the finite dimen-
sional Banach space Rn equipped with the infinity norm ∥ · ∥∞. Then for every element
U ∈ Rn the Bellman optimality backup operator B∗ is defined as

(B∗U)(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

P(s′ | s, a)U(s′)

]
, ∀ s ∈ S . (2)

This operator converts the LFS of the Bellman optimality equation to its RHS, while the
function to be converted could be any value function (not necessarily the optimal value
function).

Theorem 3 For a MDP with γ < 1, let the fixed point of the Bellman optimality backup
operator B∗ be denoted by V ∗ ∈ Rn. Then the policy given by

π∗(s) = argmax
a∈A

[
R(s, a) + γ

∑
s′∈S

P(s′ | s, a)V ∗(s′)

]
, ∀ s ∈ S (3)

will be a stationary deterministic policy. The value function of this policy V π∗
satisfies the

identity V π∗
= V ∗, and V ∗ is also the fixed point of the operator Bπ∗

.

In particular this implies that there exists a stationary deterministic policy π∗ whose value
function is the fixed point of B∗. Moreover, π∗ is an optimal policy.
Proof: We start by noting that π∗ as defined in (3) is a stationary deterministic policy,
and so we can conclude that Rπ∗

(s) = R(s, π∗(s)) and Pπ∗
(s′ | s) = P(s′ | s, π∗(s)) for all

s ∈ S and a ∈ A.
As V ∗ is the fixed point of B∗, namely B∗V ∗ = V ∗, by (2) and (3) we can write for all

s ∈ S

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

P(s′ | s, a)V ∗(s′)

]
= R(s, π∗(s)) + γ

∑
s′∈S

P(s′ | s, π∗(s))V ∗(s′)

= Rπ∗
(s) + γ

∑
s′∈S

Pπ∗
(s′ | s)V ∗(s′)

= V π∗
(s) .

This completes the proof of the first part of the theorem.
To prove that π∗ is an optimal policy, we show that if an optimal policy exists then its

value function must be a fixed point of the operator B∗. Assume that an optimal policy
exists. Then we can specify a stationary deterministic policy to be optimal, and let us
denote it as µ and the corresponding optimal value function as V µ. Suppose that V µ is
not a fixed point of B∗. Then there exists s ∈ S such that V µ(s) ̸= (B∗V µ)(s), which
implies that V µ(s) > (B∗V µ)(s). Then the greedy policy π̂ induced by V µ(s) implies that
there exists a policy π̂ which is strictly better than µ, which leads to a contradiction. This
proves that V µ must be the unique fixed point of B∗. Combining this fact with the first

10-5

part implies that V ∗ must be the optimal value function and π∗ is an optimal policy. This
completes the proof. 2

Theorem 3 suggests a straightforward way to calculate the optimal value function V ∗

and an optimal policy π∗. The idea is to run fixed point iterations to find the fixed point of
B∗. Once we have V ∗, an optimal policy π∗ can be extracted using the argmax operator in
the Bellman optimality equation. The pseudo-code of this algorithm is given in Algorithm
6, which takes as input an infinite horizon MDPM = (S,A,P,R, γ) and a tolerance ϵ, and
returns the optimal value function and an optimal policy.

Algorithm 6: Value iteration

Input: ϵ
For all states s ∈ S, V ′(s)← 0, V (s)←∞
while ∥V − V ′∥∞ > ϵ do

V ← V ′

For all states s ∈ S, V ′(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S P(s′ | s, a)V (s′)

]
V ∗ ← V for all s ∈ S
π∗ ← argmax

a∈A

[
R(s, a) + γ

∑
s′∈S P(s′ | s, a)V ∗(s′)

]
, ∀ s ∈ S

return V ∗(s), π∗(s) for all s ∈ S

If Algorithm 6 is run with ϵ = 0, we can recover the optimal value function and an
optimal policy exactly. However in practice, ϵ is set to be a small number such as from 10−9

to 10−12.

Acknowledgement

This lecture notes partially use material from Reinforcement learning: An introduction,
Reinforcement learning: Theory and algorithms, and CS234: Reinforcement learning from
Stanford.

10-6

