Lecture 5 - Explore-then-commit algorithms

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning Course Page: [Click]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つへぐ

DDA 4230 Resources

Please join our Slack group.

Please check our course page.

https://join.slack.com/t/ slack-us51977/shared_invite/ zt-22g8b40v8-0qSs9o0G3~8hXHwWydlCpw

https://guiliang.github.io/courses/

 $cuhk-dda-4230/dda_4230.html$

The Explore-then-commit (ETC) Algorithm

Explore-then-commit Algorithm: 1) In the first km rounds, the algorithm pulls each arm for k times. 2) The algorithm then calculates the empirical mean of the rewards of each arm. 3) The arm with the best mean will be selected for the rest of the horizon.

Algorithm 1: The explore-then-commit algorithm

while $km \leq t \leq T-1$ do

$$a_t = rgmax_{i \in [m]} rac{1}{k} \sum_{t'=0}^{mk-1} r_{t'} \mathbbm{1}\{a_{t'} = i\}$$
 (3) (3) (3) (3) (3)

The Regret of the Explore-then-commit (ETC) Algorithm We now show a general regret bound of ETC.

Theorem

Assume that r(i) is 1-sub-Gaussian for each i. The regret under ETC satisfies

$$\overline{R}_{T} \leq k \sum_{i \in [m]} \Delta_{i} + (T - mk) \sum_{i \in [m]} \Delta_{i} \exp\left(-\frac{k\Delta_{i}^{2}}{4}\right).$$
(1)

For two-armed bandits (m = 2), taking $k = \lceil \max \{1, 4\Delta_2^{-2} \log(T\Delta_2^2/4)\} \rceil$ yields

$$\overline{R}_{T} \leq \Delta_{2} + \frac{4}{\Delta_{2}} + \frac{4}{\Delta_{2}} \log\left(\frac{T\Delta_{2}^{2}}{4}\right) \cdot \underbrace{(2)}_{\text{The Chinese University of Hong Kong, Shenzher}} (2)$$

The Regret of the Explore-then-commit (ETC) Algorithm proof. Arm *i* is pulled for exactly *k* times in the first *mk* rounds. It is pulled for T - mk times in the rest T - mk rounds if the empirical mean at time mk - 1 is optimal for arm *i* among all arms. Therefore, the expected number of pulls of arm *i* through the horizon is

The Regret of the Explore-then-commit (ETC) Algorithm By the property of sub-Gaussian random variables, $\hat{\mu}_{mk-1,i} - \mu_i - (\hat{\mu}_{mk-1,1} - \mu_1)$ is $\sqrt{2/k}$ -sub-Gaussian. By the tail bound,

$$\mathbb{P}(\hat{\mu}_{mk-1,i} - \mu_i - (\hat{\mu}_{mk-1,1} - \mu_1) \ge \Delta_i) \le \exp\left(-\frac{k\Delta_i^2}{4}\right).$$

Therefore, $\overline{R}_T = \sum_{i=1}^m \mathbb{E}[N_{T,i}]\Delta_i$
$$\le \sum_{i=1}^m \Delta_i \left(k + (T - mk) \mathbb{P}(\hat{\mu}_{mk-1,i} - \mu_i - (\hat{\mu}_{mk-1,1} - \mu_1) \ge \Delta_i)\right)$$
$$\le \sum_{i=1}^m \Delta_i \left(k + (T - mk) \exp\left(-\frac{k\Delta_i^2}{4}\right)\right).$$
 A we have the probability of Hong Kong, Shenzhen the Chinese University of Hong Kong, Shenzhen the chinese Universit

~

The Regret of the Explore-then-commit (ETC) Algorithm

We then prove (2) when m = 2. In fact, (1) reduces to

$$\overline{R}_{T} \leq \Delta_{2} \left(k + (T - mk) \exp\left(-\frac{k\Delta_{2}^{2}}{4}\right) \right)$$
$$\leq \Delta_{2} \left(k + T \exp\left(-\frac{k\Delta_{2}^{2}}{4}\right) \right).$$

Taking derivative against k helps us get $k_0 = 4\Delta_2^{-2}\log(T\Delta_2^2/4)$. Taking the maximum with 1 and ceiling make $k = \lceil \max\{1, 4\Delta_2^{-2}\log(T\Delta_2^2/4)\}\rceil$ a positive integer, where $k_0 \le k \le k_0 + 1$.

The Regret of the Explore-then-commit (ETC) Algorithm Substituting this choice of k gives us

The Regret of the Explore-then-commit (ETC) Algorithm

Important properties of ETC:

- The regret bound depends on the suboptimality gaps Δ_2 and the horizon T.
- The dependency on $\frac{1}{\Delta_2}$ could be removed at a cost of a larger order of T, e.g., $\overline{R}_t \leq (\Delta_2 + e^{-2})\sqrt{T}$ when m = 2.
- The dependence of Δ_2 could be removed with a regret bound of $O(T^{2/3})$,
- The dependence on *T* can be resolved by a doubling trick without increasing the regret by too much.

The Regret of the Explore-then-commit (ETC) Algorithm

In fact, if the rewards are Gaussian with variance at most 1, the gap-dependent regret bound under m = 2 can be further improved by $O(\log \log T)$ by a more careful choice of k. Denote $\Delta = \Delta_2$ and π as the Archimedes' constant.

Theorem

Assume that r(i) is Gaussian with variance at most 1 for each i and $T \ge 4\sqrt{2\pi e}/\Delta^2$. By choosing $k = \lceil \frac{2}{\Delta^2} W(\frac{T^2 \Delta^4}{32\pi}) \rceil$, the regret of ETC satisfies

$$\overline{R}_{T} \leq \Delta + \frac{2}{\Delta} \left(\log \frac{T^{2} \Delta^{4}}{32\pi} - \log \log \frac{T^{2} \Delta^{4}}{32\pi} + \log(1 + \frac{1}{e}) + 2\right),$$
(1)

where $W(y) \exp(W(y)) = y$ denotes the Lambert function.

4/5

The Regret of the Explore-then-commit (ETC) Algorithm Some empirical results. In the following figure we shall see that our upper bound is indeed not bad when the suboptimality gap Δ is large.

Regret (solid line) and regret upper bound (dashed line) of ETC with 2-armed bandit with underlying distribution being Gaussian.

Question and Answering (Q&A)

