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Imitation Learning

Motivation. Learning policies from rewards is successful in situations where data is

cheap and easily gathered. This approach fails, however, when data gathering is slow,

failure must be avoided (e.g. autonomous vehicles), or safety is desired.

• One approach to mitigate the sparse reward problem is to manually design reward

functions that are dense in time. However, this approach requires a human to

hand-design a reward function with the desired behavior in mind.

• It is therefore desirable to learn by imitating agents performing the task in question.
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Imitation Learning

Generally, experts provide a set of demonstration trajectories, which are sequences of

states and actions. More formally, we assume that we are given

• State space, action space;

• Access to the transition oracle P(s ′ | s,a);

• Set of one or more teacher demonstrations (s0,a0,s1,a1, . . .), where actions are

drawn from the teacher’s policy π∗.

However, no reward function oracle R and no explicit transition model P(s ′ | s,a) are

given.
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Behavioral Cloning

A natural question raised out of this context is then

Can we learn the teacher’s policy using supervised learning?

In behavioral cloning, we aim simply to learn the policy via supervised learning.

• Specifically, we will fix a policy class and aim to learn a policy mapping states to

actions given the data tuples {(s0,a0),(s1,a1), . . .}.
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Behavioral Cloning

One challenge to this approach is that data is not distributed i.i.d. in the state space.

In RL, errors are compounding and they accumulate over the length of the episode.

• The training data for the learned policy will be tightly clustered around expert

trajectories.

• If a mistake is made that puts the agent in a part of the state space that the

expert did not visit, the agent has no data to learn a policy from.

• The error scales quadratically in the episode length, as opposed to the linear

scaling in standard RL.
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Behavioral Cloning

DAGGER: Dataset aggregation:

• This algorithm aims to mitigate the problem of compounding errors by adding data

for newly visited states.

• As opposed to assuming there is a pre-defined set of expert demonstrations, we

assume that we can generate more data from an expert.

• The limitation of this, of course, is that an expert must be available to provide

labels, sometimes in real-time.
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Behavioral Cloning
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Inverse Reinforcement Learning

Motivation. Behavior cloning directly learns the policy as desired, but its practical

performance can be limited. The reason is that apart from the input provided by the

experts, there are not many generalizations that are provided by the algorithm. Instead,

a better generalization can be obtained by learning the reward function, which is a

succinct description of the task, from the expert input.

Can we recover the reward function R from expert input?
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Inverse Reinforcement Learning

Can we recover the reward function R from expert input?

In inverse reinforcement learning, the goal is to learn the reward function (that has not

been provided) based on the expert demonstrations.
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Linear Feature Reward Inverse RL
We consider a reward which is represented as a linear combination of features

R(s) = wT x(s) ,

where R(·) is a deterministic realization of R(·) and w ∈ Rd ,x : S → Rd represent the

weight and the feature. The IRL problem is to identify the weight vector w , given a set

of demonstrations. The resulting value function for a policy π can be expressed as

V π(s) = Eπ

[
∞∑

t=0

γ
tR(st) | s0 = s

]
= Eπ

[
∞∑

t=0

γ
twT x(st) | s0 = s

]

= wTEπ

[
∞∑

t=0

γ
tx(st) | s0 = s

]
= wT

µ(π) ,

where µ(π | s0 = s) ∈ Rd is the discounted weighted

frequency of state features x(s) under policy π. 5 / 8



Linear Feature Reward Inverse RL
Eπ∗

[
∞∑

t=0

γ
tR∗(st) | s0 = s

]
≥ Eπ

[
∞∑

t=0

γ
tR∗(st) | s0 = s

]
, ∀π ,

where R∗ denotes an optimal reward function. Thus, if an expert’s demonstrations are

optimal (i.e. actions are drawn from an optimal policy), to identify w it is sufficient to

find some w∗ such that

w∗T
µ(π∗ | s0 = s)≥ w∗T

µ(π | s0 = s) , ∀π,∀s ,

where some restrictions are put on w∗ to avoid trivial solutions to the linear system. As

long as this constraint is linear, the problem can be solved by linear programming.

max
w∗T

w∗T
µ(π∗ | s0 = s)−w∗T

µ(π | s0 = s) , ∀π
∗ ̸= π,∀s ,

s.t.,∥w∗T∥= 1
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Apprenticeship learning

Armed with inverse reinforcement learning, the question we are asking is

Can we use the recovered reward to generate a good policy?
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Apprenticeship learning

For a policy π to perform as well as the expert policy π∗, it suffices that we have a

policy such that its discounted cumulative feature expectations match the expert’s

policy . More precisely, if

∥µ(π | s0 = s)−µ(π∗ | s0 = s)∥1 ≤ ε ,

then by the Cauchy-Schwartz inequality, for all w with ∥w∥∞ ≤ 1,

|wT
µ(π | s0 = s)−wT

µ(π∗ | s0 = s)| ≤ ε .
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Apprenticeship learning
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Apprenticeship learning

In practice, there are challenges associated with this approach:

• If the expert policy is suboptimal, than the resulting policy is a mixture of

somewhat arbitrary policies that have the expert policy in their convex hull.

• This approach relies on being able to compute an optimal policy given a reward

function, which may be expensive or impossible.

• There is an infinite number of reward functions with the same optimal policy, and

an infinite number of stochastic policies that can match feature counts.
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Maximum entropy inverse RL

To address the problem of ambiguity, Maximum Entropy (MaxEnt) IRL considers the

collection of all possible H-step trajectories in a deterministic MDP. For a linear reward

model, a policy is completely specified by its distribution over trajectories.

Given this, which policy should we choose given a set of k distributions?
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Maximum entropy inverse RL

Again, assume that the reward function is a linear function of the features

R(s) = wT x(s). Denoting trajectory j as τj , we can write the feature counts for this

trajectory as

µτj =
∑
si∈τj

x(si ) .

Averaging over m trajectories, we can write the average feature counts

µ̃ =
1
k

k∑
j=1

µτj .
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Maximum entropy inverse RL
The principle of maximum entropy motivates choosing a distribution with no additional

preferences beyond matching the feature expectations in the demonstration dataset

maximize
P

−
∑

τ

P(τ) logP(τ)

subject to
∑

τ

P(τ)µτ = µ̃ ,∑
τ

P(τ) = 1 .

In the case of linear rewards, this is equivalent to specifying the weights w that yield a

policy with the maximum entropy, constrained to matching the feature expectations.
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Maximum entropy inverse RL

Maximizing the entropy of the distribution over the paths subject to the feature

constraints from observed data implies we maximize the likelihood of the observed data

under the maximum entropy (exponential family) distribution

P(τj | w) =
1

Z (w)
exp

(
wT

µτj

)
=

1
Z (w)

exp

∑
si∈τj

wT x(si )

 ,

with

Z (w ,s) =
∑

τs

exp
(
wT

µτs

)
.
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Maximum entropy inverse RL
This induces a strong preference for low cost paths, and equal cost paths are equally

probable. Many MDPs of interest are stochastic. In these cases, the distribution over

paths depends on both the reward weights and on the dynamics

P(τj | w ,P(s ′ | s,a))≈
exp

(
wT µτj

)
Z (w ,P(s ′ | s,a))

∏
si ,ai∈τj

P(si+1 | si ,ai ).

The weights w are learned by maximizing the likelihood of the data

w∗ = argmax
w

L(w) = argmax
w

∑
examples

logP(τ | w) .
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Maximum entropy inverse RL

The gradient is the difference between expected empirical feature counts and the

learner’s expected feature counts, which can be expressed in terms of the expected

state visitation frequencies

∇L(w) = µ̃ −
∑

τ

P(τ | w)µτ = µ̃ −
∑
si

D(si )x(si ) ,

where D(si ) denotes the state visitation frequency. This approach has been influential,

as it provides a principle way to select among the many possible reward functions.
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Maximum entropy inverse RL
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Question and Answering (Q&A)
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