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Optimality of MDPs

Reinforcement Learning seeks to find the best policy that achieves the greatest value

function among the set of all possible policies.

What do we exactly mean by finding an optimal policy?

The existence of an optimal policy will be assumed throughout the course unless

otherwise mentioned.
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Optimality of MDPs

We first define precisely what it means for a policy, not necessarily stationary, to be an

optimal policy.

Definition

A policy π∗ is an optimal policy if for every policy π, for all states s ∈ S ,

V π∗(s)≥ V π(s).

When the MDP is non-stationary or is with a finite horizon, the definition of optimality

will be V π∗
t (s)≥ V π

t (s) for every π, s, conditioning on each t.
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Optimality of MDPs

In the setting of stationary, infinite-horizon MDPs:

• If some not-necessarily stationary policy is optimal, then at least one stationary

policy is optimal: ∃π∗t(a|s)→ π∗(a|s).

• if some not-necessarily deterministic policy is optimal, then at least one

deterministic policy is optimal. ∃π∗(a|s)→ π∗(s).
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Optimality of MDPs

Taking discrete state space S = [n] and action space A= [m] as an example,

• Stationary and deterministic MDP: the total number of policies is mn.

• Non-Stationary and deterministic MDP: the total number of policies is mnT .

• Stochastic MDP: the total number of policies will be infinite.

Stationary and deterministic policies can significantly reduce the size of the universe of

policies when searching (especially the brute-force search that checks all policies) for an

optimal policy.
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Optimality of MDPs

After establishing the existence of an optimal policy and moreover concluding that a

deterministic stationary policy suffices, we define:

Definition
The optimal state value function for an infinite horizon MDP is defined as

V ∗(s) = max
π∈Π

V π(s) , (1)

and there exists a stationary deterministic policy π∗ ∈ Π, which is an optimal policy,

such that V ∗(s) = V π∗(s) for all states s ∈ S, where Π is the set of all stationary

deterministic policies.
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Optimality of MDPs

The uniqueness of optimal value functions and policies.

• The optimal value function is unique for an MDP.

• The uniqueness of optimal policies does not hold.

Proof. Consider a counter-example to the uniqueness of optimal policy: we introduce a

’dummy’ state that is never accessed, and which carries a reward value of zero. Under

this hypothetical circumstance, any policy could execute arbitrary actions without

influencing the overall value assessments.
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Optimality of MDPs

Optimal policy (action) is likely to be unique when the decision matters and the task is

natural and complicated enough.
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Dynamic Programming
Sequential decision-making can be solved via dynamic programming for the finite

horizon case. Denoting V ∗t (s) to be the optimal value function at time t,

V ∗t (s) = max
a

E[R(s,a)]+ γ

∑
s ′∈S

P(s ′ | s,a)V ∗t+1(s
′) , ∀ t = 0, . . . ,T −1 ,

V ∗T (s) = 0 .

For example,starting from T to T −2, we can compute:

V ∗T (s) = 0 , V ∗T−1(s) = max
a

E[R(s,a)] ,

V ∗T−2(s) = max
a

E[R(s,a)]+ γ

∑
s ′∈S

P(s ′ | s,a)V ∗T−1(s
′) .
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Dynamic Programming
Sequential decision-making can be solved via dynamic programming for the finite

horizon case. Denoting V ∗t (s) to be the optimal value function at time t,

V ∗t (s) = max
a

E[R(s,a)]+ γ

∑
s ′∈S

P(s ′ | s,a)V ∗t+1(s
′) , ∀ t = 0, . . . ,T −1 ,

V ∗T (s) = 0 .

However, this requires the knowledge of the world model (R(s,a) and P(s ′ | s,a)).

Can we estimate R(s,a) and P(s ′ | s,a) for dynamic programming?

Yes, but good decisions do not mean good estimations.

For example, by empirical estimation: P̂(s ′ | s,a) = n#(s ′)
n#(s,a) .
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The Bellman Optimality Equation

The Bellman optimality equation, named after Richard E. Bellman, is a necessary

condition for a value function to be optimal:

V ∗(st) = max
a

E [rt + γV ∗(st+1) | at = a] .

The Bellman optimality equation ̸= The Bellman equation.

• The Bellman equation describes an arbitrary policy’s value function

V (st) = E[rt + γV (st+1)] (expected w.r.t. π(at |st)).

• The Bellman optimality equation takes the maximum overall actions (no policy in

the expectation).
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The Bellman Optimality Equation

The Bellman optimality equation, named after Richard E. Bellman, is a necessary

condition for a value function to be optimal:

V ∗(st) = max
a

E [rt + γV ∗(st+1) | at = a] .

Value Iteration (VI). If we replace V ∗ by a not-necessarily optimal value function V ,

VI assigns RHS to V and repeats the iteration:

V (st)←max
a

E [rt + γV (st+1) | at = a] .

This leads to improvements of the current value for each iteration and V will converge

to the optimal value function under some conditions.
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The Bellman Optimality Equation
The Bellman optimality equation, named after Richard E. Bellman, is a necessary

condition for a value function to be optimal:

V ∗(st) = max
a

E [rt + γV ∗(st+1) | at = a] .

Q-learning. In order to satisfy the Bellman optimality equation in an alternative form

(Q∗ is the action-value function for an optimal policy):

Q∗(st ,at) = max
a

E[rt + γQ∗(st+1,a)]

Q-learning defines a Bellman error (e.g. 1
2(LHS−RHS)2) and minimizes it,

1
2

[
Q(st ,at)−max

a
E[rt + γQ(st+1,a)]

]2
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Examples of MDPs: Boyan chain

For the Boyan chain, the starting state is 1. It has a reward of −1 for every step

except for the terminal state and the process terminates at state N+1. The terminal

state has no reward. The transition probability shown in:
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Examples of MDPs: Boyan chain

V (s): the negative number of steps elapsed from state s to the terminal state.

• By the linearity of expectation: V (s) = 1
2V (s+1)+ 1

2V (s+2)−1 for s ≤ N−1.

• With the boundary conditions V (N) =−1 and V (N+1) = 0.

We find that V (s) = 4
9 −

2
3(N− s+2)− 4

9(−
1
2)

N−s+2 .
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Examples of MDPs: The Boyan chain variant

An action a ∈ [0,0.5] needs to be decided by the agent at every state. The starting

state is 1 and the set of terminal states is {0,N+1}. The reward is −1 for every

transition. and the reward at state 0 and state N+1 are 1 and N2.
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Examples of MDPs: The Boyan chain variant

• Finding the optimal policy is hard: set a= 0.5 at every state.

• Finding a sub-optimal policy is relatively easy: set a= 0 in the starting state, the

algorithm can generate a return of −1+ γ .
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Examples of MDPs: Mountain Car

The problem describes the decision-making of a car driver who, starts from a valley and

aims to drive to the mountain peak (the flag).

• Credit Assignment: Can we use

d(car ,flag) as the values function? If

no, what should be the value function?
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Examples of MDPs: Mountain Car

The problem describes the decision-making of a car driver who, starts from a valley and

aims to drive to the mountain peak (the flag).

• Credit Assignment: Can we use

d(car ,flag) as the values function? If

no, what should be the value function?

• The optimal policy is state-dependent:

move left and then move right.
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Examples of MDPs: Mountain Car

Montezuma’s Revenge is one of the Atari 2600 games, which compose the Atari

learning environment (ALE) commonly used in reinforcement learning tests.

• In the first room, the agent must

descend a ladder, jump across an open

space using a rope, get the key, jump

over a moving enemy...

• In the first level, there are 23 more

such rooms for the agent to navigate.
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Examples of MDPs: Mountain Car

Montezuma’s Revenge is one of the Atari 2600 games, which compose the Atari

learning environment (ALE) commonly used in reinforcement learning tests.

• Sparse Rewards and Long Horizon: the agent

has to ever touch some positive reward to

receive a reinforcement signal.

• Problems in Exploration and Credit

Assignment: Properly crediting the reinforce to

its long sequence of actions is difficult.
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Question and Answering (Q&A)
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