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Policy Gradient in Episodic MDP

Policy Gradient Methods:

• Let τ denote a state-action sequence s0,a0, . . . ,sT ,aT .

• Let r(τ) =
∑T

t=0 r(st ,at) denote trajectory reward .

• Let Pπθ (τ) denote the corresponding occupancy measure

Then for a policy π parameterized by θ , we desire to find

max
θ

E [Pπθ (τ)r(τ)] .
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Policy Gradient in Episodic MDP

Policy Gradient Methods: Taking gradient (denoted as g) with respect to θ gives us

g = E

[
r(τ)∇θ log

(
T∑
t=1

P (st+1 | st ,at) ·πθ (at | st)

)]
= E

[
r(τ)

T∑
t=1

∇θ log(πθ (at | st))

]
.

This gradient is unbiased and we do not need access to the dynamic model to compute

this.
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Policy Gradient in Stationary MDP

There are several different related expressions for the policy gradient, which have the

form

g = E

[
∞∑

t=0

Ψt∇θ logπθ (at | st)

]
,
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Policy Gradient in Stationary MDP∑
∞

t=0Ψt could be the following:

1.
∑

∞

t=0 rt : the total reward of the trajectory Monta-Carlo;

2. Qπ (st ,at) : the action value function Temporal Difference;

3.
∑

∞

t ′=t rt ′ : the reward following action at Monta-Carlo;

4.
∑

∞

t ′=t rt ′ −b (st) : the reward following action at with a baseline Monta-Carlo;

5.
∑

∞

t ′=t A
π (st ,at) : the advantage function Temporal Difference;

6.
∑

∞

t ′=t rt +V π (st+1)−V π (st) : the TD residual Temporal Difference.

The latter formulas use the definitions Aπ (st ,at) := Qπ (st ,at)−V π (st), which is the

advantage function.
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Off Policy Optimization
• In policy optimization methods, the data samples we have collected may not

correspond to the policy we wish to optimize.

• In this case, some special handling is needed so that the gradient estimates can be

unbiased.

Let π1 be the policy we are currently following and π2 be the policy we want to

optimize. Let them be parameterized by θ1,θ2, respectively. Then we can use

importance sampling to re-weight our objective as

max
θ1

E
[
Pπθ2 (τ)

Pπθ1 (τ)
r(τ)

]
.
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Trust Region Policy Optimization (TRPO)

Motivation: The challenge of step size.

• In the classic supervised learning setting or in the optimization literature, having a

bad step size may not be terrible. This is because the next update can partially

correct the error in the previous steps.

• In policy optimization, when the step size is too far, we obtain a terrible policy.

This indicates that the next batch of data will be collected under this terrible

policy. Exploration could be exploratory, but updates should be more conservative.

• It becomes not clear how to recover short of going back and shrinking the step size.
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Trust Region Policy Optimization (TRPO)

One method of choosing the step size is by line search. The procedure is:

1. Calculate the initial loss (e.g., with Monte-Carlo estimation) and initialize the step

size to be a large value;

2. Update the parameter with the gradients under the current step size can calculate

the new loss;

3. Decrease the value of step size until we have found a new loss that is less than the

initial loss.

However, 1) it may be expensive to compute so many gradients, 2) this method ignores

the quality of our gradients.
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Trust Region Policy Optimization (TRPO)

An alternative method is the trust region method.

Let us first denotes P(τ | θ) = P(s0) ·ΠT
t=1P(st+1 | st ,at)πθ (at | st). Then the trust

region method finds us the next parameter θ +δθ by solving the following problem.

max
δθ

g⊤
δθ

subject to dKL (P(τ|θ)||P(τ|θ +δθ))≤ ε ,

where dKL denotes the KL divergence, g is our gradient estimate, and ε is a parameter

we can set. Here, the change in the objective function is estimated by assuming that

the objective function in this neighboring area is linear.
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Trust Region Policy Optimization (TRPO)

Source.1
1https://jonathan-hui.medium.com/

rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9 5 / 7

https://jonathan-hui.medium.com/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9
https://jonathan-hui.medium.com/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9


Trust Region Policy Optimization (TRPO)

Source.1
1https://www.youtube.com/watch?v=fcSYiyvPjm4&ab_channel=ShusenWang
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Trust Region Policy Optimization (TRPO)

Using the expression of the KL divergence, we have

dKL(P(τ;θ)∥P(τ;θ +δθ)) =
∑

τ

P(τ;θ) log
P(τ;θ)

P(τ;θ +δθ)

=
∑

τ

P(τ;θ) log
P (s0)

∏T−1
t=0 πθ (at | st)P (st+1 | st ,at)

P (s0)
∏T−1

t=0 πθ+δθ (at | st)P (st+1 | st ,at)

=
∑

τ

P(τ;θ) log

∏T−1
t=0 πθ (at | st)∏T−1

t=0 πθ+δθ (at | st)
.
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Trust Region Policy Optimization (TRPO)

With M samples, this term can be approximated by the sample average and we may

rewrite the maximization problem to be

max
δθ

g⊤
δθ

subject to
1
M

∑
(s,a)

log
πθ (a | s)

πθ+δθ (a | s)
≤ ε .

This maximization problem with the constraint can be hard to enforce given

complicated policies like neural networks.

5 / 7



Trust Region Policy Optimization (TRPO)
We would need to approximate the KL divergence further for a feasible objective. This

is done through second-order approximation with fisher matrix Fθ .

dKL (πθ (a | s)∥πθ+δθ (a | s))≈ δθ
⊤

 ∑
(s,a)∼θ

∇θ logπθ (a | s)∇θ logπθ (a | s)⊤
δθ

= δθ
⊤Fθ δθ .

Our problem is simplified to linear objective quadratic constrained optimization:

max
δθ

g⊤
δθ

subject to δθ
⊤Fθ δθ ≤ ε ,
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Trust Region Policy Optimization (TRPO)

The above linear objective quadratic constrained optimization problem could be solved

analytically using the Karush-Kuhn-Tucker (KKT) conditions. Thus the final TRPO

objective is given as

Surrogate loss :max
π

L(π) = Eπold

[
π(a | s)

πold(a | s)
Aπold(s,a)

]
Constraint: Eπold [dKL (π∥πold)]≤ ε ,

where A denotes the advantage function. This corresponds to a general policy gradient

form we have mentioned earlier.
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Proximal Policy Optimization

The PPO method enforces a “soft” constraint by adding a proximal value to the

objective function. The objective is the following

L(π) = Eπold

[
πθ (at | st)

πθold (at | st)
Aπold(s,a)−βdKL (πθold ,πθ )

]
.

The β can be fixed or adaptively chosen (or simply set to 0).

6 / 7



Proximal Policy Optimization

The PPO method enforces a “soft” constraint by adding a proximal value to the

objective function. The objective is the following

L(π) = Eπold

[
πθ (at | st)

πθold (at | st)
Aπold(s,a)−βdKL (πθold ,πθ )

]
.

The β can be fixed or adaptively chosen (or simply set to 0). One reason why one may

wish to adaptively choose β is because it can be hard to find one β that performs well

across different problems.
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Proximal Policy Optimization

The policy’s performance can fluctuate greatly when ρt(θ) =
πθ (at |st)

πθold (at |st) changes too

quickly. Thus PPO limits ρ to a range of [1− ε,1+ ε] such that no abrupt updates to

the policy will be made. The surrogate objective is then written as

LCLIP(π) = E [min{ρt(θ)A(s,a),clip(ρt(θ),1− ε,1+ ε)A(s,a)}] .

We take the minimum of the constrained and unconstrained objectives such that our

final objective is a lower bound of the unclipped objective. With this scheme, we only

ignore the change in probability ratio when it would make the objective improve, and we

include it when it makes the objective worse.
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Proximal Policy Optimization
In the following plots, the rate r = ρt(θ) =

πθ (at |st)
πθold (at |st)
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Proximal Policy Optimization
In the following algorithm, g denotes the clipping function.
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Proximal Policy Optimization
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Question and Answering (Q&A)
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