Lecture 12 - Discrete Q-learning

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning Course Page: [Click]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つへぐ

Model-based v.s. Model-free Algorithms

The model indicates the transition function and the reward function. This estimation could be in form of point estimation or distribution estimation like posterior sampling.

- Model-based Algorithm: maintains an estimate of the model and uses the model when interacting with the environment.
- Model-free Algorithm: does not estimate the world model.

When we do not have a reasonable estimation of the model (under large state and action spaces and continuous settings), an error will be induced by a wrongly estimated model as the model bias (maybe accumulate during learning).

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Q-Learning

We start with the value iteration algorithm and discuss how the model could be lifted.

Algorithm 1: Value iteration Input: ϵ For all states $s \in S$, $V'(s) \leftarrow 0$, $V(s) \leftarrow \infty$ while $||V - V'||_{\infty} > \epsilon$ do $V \leftarrow V'$ For all states $s \in S$, $V'(s) = \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V(s') \right]$ $V^* \leftarrow V$ for all $s \in S$ $\pi^* \leftarrow \arg\max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s' \mid s, a) V^*(s') \right]$, $\forall s \in S$ return $V^*(s)$, $\pi^*(s)$ for all $s \in S$

Q-Learning

- The terms $\sum_{s' \in S} P(s' \mid s, a) V(s')$ and $\sum_{s' \in S} P(s' \mid s, a) V^*(s')$ could remove the dependency on P by representing the action values.
- Introducing the step size so that the update only takes at α portion of the action value while the $1-\alpha$ portion of the action value remains the same.

Algorithm 2: Q-learning

```
Input: \epsilon, \alpha

For all (s, a) \in S \times A, Q'(s, a) \leftarrow 0, Q(s, a) \leftarrow \infty

while ||Q - Q'||_{\infty} > \epsilon do

|Q \leftarrow Q'|_{\infty} > \epsilon do

For all state-action-reward-state tuple (s, a, r, s') \in \tau,

Q'(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \max_{a' \in A} [r + \gamma Q(s', a')]

Q^* \leftarrow Q for all (s, a) \in S \times A

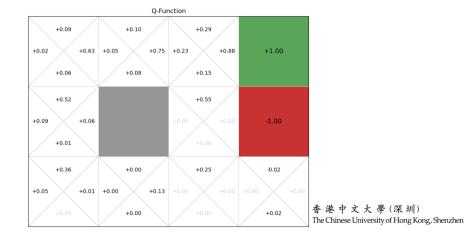
\pi^* \leftarrow \arg \max Q(s, a)

return Q^*(s, a), \pi^*(s) for all s, a
```

3/6

Q-Learning

Q Learning in Grid World.



<□> <⊡> <⊡> < ⊇> < ⊇> < ⊇> < ⊇> < ⊇
> < > < <>
3/6

Exploration and arepsilon-greedy Q-learning

In Q-learning, the trajectory sampled is subject to the current policy and thereof the current value estimation. However,

- It is possible that the algorithm is stuck at a suboptimal action value estimate and does not update itself.
- It is possible that some states are never explored with some initialization of the policy and value functions.

A simple way of involving exploration is to force the algorithm to select a random action with probability ε . This ε could delay over the iterations, as is in the ε -greedy algorithm for multi-armed bandits. ${}^{\textcircled{\mbox{\scriptsize $\$$}}}$

Exploration and arepsilon-greedy Q-learning

Algorithm 3: Q-learning with ε -greedy exploration

Input: ϵ, α For all $(s, a) \in \mathcal{S} \times \mathcal{A}$, $Q'(s, a) \leftarrow 0$, $Q(s, a) \leftarrow \infty$ while $||Q - Q'||_{\infty} > \epsilon$ do $Q \leftarrow Q'$ Sample a trajectory τ from the policy $\pi(a \mid s) = \begin{cases} \operatorname*{arg\,max}_{a \in A} Q(s, a) & \text{with probability } 1 - \varepsilon \\ \operatorname*{random action} & \text{with probability } \varepsilon \end{cases}$ For all state-action-reward-state tuple $(s, a, r, s') \in \tau$, $\begin{array}{c} Q'(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \max_{a' \in \mathcal{A}} [r + \gamma Q(s',a')] \\ Q^* \leftarrow Q \text{ for all } (s,a) \in \mathcal{S} \times \mathcal{A} \end{array}$ $\pi^* \leftarrow \arg \max Q(s, a)$ $a \in A$ **return** $Q^*(s, a), \pi^*(s)$ for all s, a采圳) long Kong, Shenzhen Levence

イロン イロン イヨン イヨン

Q-learning with UCB

In spite of simplicity, ε -greedy Q-learning does not have a rigorous regret guarantee.

- We present another variant of Q-learning with UCB exploration. This algorithm is the first Q-learning variant that has a rigorous regret guarantee of \sqrt{K} .
- We again use $Q_h(s, a)$ as the time-dependent action-value function, which is necessary when the horizon of each episode is constant.

Q-learning with UCB

Algorithm 4: Q-learning with UCB exploration **Input:** α : adaptive step size; *p*: probability tolerance Initialize $Q_h(s, a) \leftarrow H, N_h(s, a) \leftarrow 0$ while $k \leq K - 1$ do Start an episode with s_0 for $h \leq H - 1$ do Take action $a_{h}^{k} = \arg \max_{a} Q_{h}(s_{h}^{k}, a)$ and observe s_{h+1}^{k} $N_h(s_h^k, a_h^k) \leftarrow N_h(s_h^k, a_h^k) + 1$ Update the action value as $Q_{h}(s_{h}^{k}, a_{h}^{k}) \leftarrow (1 - \alpha)Q_{h}(s_{h}^{k}, a_{h}^{k}) + \alpha \left[r_{h}(s_{h}^{k}, a_{h}^{k}) + V_{h+1}(s_{h+1}^{k}) + c\sqrt{\frac{H^{3}\log(nmHK/\delta)}{N_{h}(s_{h}^{k}, a_{h}^{k})}} \right]$ Update the state value as $V_h(s_h^k) = \min\left\{\max Q_h(s_h^k, a), H\right\}$ 深圳) $Q_h^* \leftarrow Q_h$ Hong Kong, Shenzhen $\pi_{h}^{*} \leftarrow \arg \max_{a} Q_{h}(s, a)$ **return** Q_h^*, π_h^* for all $h \in [H]$ 3.5

5/6

Q-learning with UCB

Theorem

By choosing $\alpha = \frac{H+1}{H+N}$ with the visitation count $N = N_h(s_h^k, a_h^k)$, there exists an absolute constant c such that with probability at least $1-\delta$ the regret of Q-learning with UCB exploration is at most $O(\sqrt{nmH^5K\log(nmHK/\delta)})$.

The proof relies on the cast of the variables into a filtration and therefore the use of the Azuma-Hoeffding inequality (introduced in LN3). For those students that are interested in the proof we could host you with a presentation of it.

5/6

Question and Answering (Q&A)

< (교) < ((u) < (u) < ((u) < ((u) < (u) < ((u) < (((u) < ((u) < (((u) < (((u) < ((u) < ((u) < ((u) < ((u) < (((