
Lecture 10 - Iterative methods

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

DDA 4230 Resources

Please join our Slack group.

https://join.slack.com/t/

slack-us51977/shared_invite/

zt-22g8b40v8-0qSs9o0G3~8hXHwWydlCpw

Please check our course page.

https://guiliang.github.io/courses/

cuhk-dda-4230/dda_4230.html

2 / 8

https://join.slack.com/t/slack-us51977/shared_invite/zt-22g8b40v8-0qSs9o0G3~8hXHwWydlCpw
https://join.slack.com/t/slack-us51977/shared_invite/zt-22g8b40v8-0qSs9o0G3~8hXHwWydlCpw
https://join.slack.com/t/slack-us51977/shared_invite/zt-22g8b40v8-0qSs9o0G3~8hXHwWydlCpw
https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html
https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

Iterative Policy Evaluation
The iterative policy evaluation algorithm constructs a contraction when γ < 1, which

gives an arbitrarily close value function estimation of a given policy.

• The update V (s) =
∑

a π(a | s)
∑

s ′,r P(s ′, r | s,a) [r + γV (s ′)] forms a contraction,

such that given V ,V ′, ∥BV −BV ′∥∞ ≤ ∥V −V ′∥∞ where B denotes the operator.

3 / 8

Iterative Policy Evaluation
Application: Player evaluation in Sports Analytics. Players are rated by their observed

performance over a set of games. Given dynamic game tracking data, we:

• Apply policy evaluation to estimate the action value function Q(s,a), which

assigns a value to action a given game state s.

• Compute the player evaluation metric based on the aggregated impact (GIM, i.e.,

advantages) of their actions over the entire game or season.

3 / 8

Dynamic programming

For a finite horizon MDP, the iterative policy evaluation algorithm requires the

iteration to go through the index with a non-stationary value function. This process is

known as dynamic programming. By the Bellman equation,

Vt(s) = R(s)+ γ

∑
s ′∈S

P(s ′ | s,π)Vt+1(s
′) , ∀ t = 0, . . . ,H−1 ,

VT (s) = 0 .
(1)

For episodic MDPs, R and P can be stochastic and we run this process for many

episodes (usually denoted as T/H episodes with horizon H).

4 / 8

Dynamic programming

4 / 8

Iterative Policy Search
The policy evaluation algorithm immediately renders itself to a brute force algorithm

called policy search to find the optimal value function V ∗ and an optimal policy π∗.

• The input is an infinite horizon MDP M= (S,A,P,R,γ) with arbitrary initial

state distribution ρ0 and a tolerance ε for accuracy of policy evaluation,

5 / 8

Iterative Policy Search

The policy evaluation algorithm immediately renders itself to a brute force algorithm

called policy search to find the optimal value function V ∗ and an optimal policy π∗.

• The Algorithm terminates as it checks all |Π|= |A||S| =mn deterministic

stationary policies (Recall that we are assuming that there exists an optimal policy

and in this case there is a deterministic stationary policy that is optimal).

• The run-time complexity of this algorithm is O(|A||S|).

Lemma
Policy Search returns the optimal value function and an optimal policy when ε = 0.

5 / 8

Policy Iteration
The policy iteration algorithm applies the Bellman operator, which shows that given

any stationary policy π, we can find a deterministic stationary policy that is no worse

than the existing policy.

The output of Algorithm 4 is at least as good

as the policy π corresponding to the input

value function V π , and represents a greedy

attempt to improve the policy.
6 / 8

Policy Iteration

Lemma
Consider an infinite horizon MDP with γ < 1. The following statements hold.

1. When Algorithm 5 is run with ε = 0, it finds the optimal value function and an

optimal policy.

2. If the policy does not change during a policy improvement step, then the policy

cannot improve in future iterations.

3. The value functions corresponding to the policies in each iteration of the algorithm

form a non-decreasing sequence for every s ∈ S .

6 / 8

Policy Iteration

Policy iteration in Grid World.

6 / 8

https://gibberblot.github.io/rl-notes/single-agent/policy-iteration.html

Value Iteration

Value Iteration computes the optimal value function and an optimal policy given a

known MDP. For every element U ∈ Rn the Bellman optimality backup operator B∗ is

defined as:

(B∗U)(s) = max
a∈A

[
R(s,a)+ γ

∑
s ′∈S

P(s ′ | s,a)U(s ′)

]
, ∀ s ∈ S . (1)

7 / 8

Value Iteration

Theorem
For a MDP with γ < 1, let the fixed point of the Bellman optimality backup operator

B∗ be denoted by V ∗ ∈ Rn. Then the policy given by

π
∗(s) = argmax

a∈A

[
R(s,a)+ γ

∑
s ′∈S

P(s ′ | s,a)V ∗(s ′)

]
, ∀ s ∈ S (1)

will be a stationary deterministic policy. The value function of this policy V π∗
satisfies

the identity V π∗
= V ∗, and V ∗ is also the fixed point of the operator Bπ∗

.

7 / 8

Value Iteration
The above theorem suggests a straightforward way to calculate the optimal value

function V ∗ and an optimal policy π∗. The idea is to run fixed point iterations to find

the fixed point of B∗. Once we have V ∗, an optimal policy π∗ can be extracted using

the argmax operator in the Bellman optimality equation.

7 / 8

Value Iteration

Value Iteration in Grid World.

7 / 8

https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html

Question and Answering (Q&A)

8 / 8

