Lecture 10 - Iterative methods

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning Course Page: [Click]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つへぐ

DDA 4230 Resources

Please join our Slack group.

Please check our course page.

https://join.slack.com/t/ slack-us51977/shared_invite/ zt-22g8b40v8-0qSs9o0G3~8hXHwWydlCpw

https://guiliang.github.io/courses/

 $cuhk-dda-4230/dda_4230.html$

Iterative Policy Evaluation

The iterative policy evaluation algorithm constructs a contraction when $\gamma < 1$, which gives an arbitrarily close value function estimation of a given policy.

• The update $V(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} \mathbb{P}(s',r \mid s,a) [r + \gamma V(s')]$ forms a contraction, such that given $V, V', ||BV - BV'||_{\infty} \le ||V - V'||_{\infty}$ where B denotes the operator.

Algorithm 1: Iterative policy evaluation

```
Input: Policy \pi, threshold \epsilon > 0

Output: Value function estimation V \approx V^{\pi}

Initialize \Delta > \epsilon and V arbitrarily

while \Delta > \epsilon do

\begin{bmatrix} \Delta = 0 \\ \text{for } s \in S \text{ do} \\ V(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} \mathbb{P}(s', r \mid s, a) [r + \gamma V(s')] \\ \Delta = \max(\Delta, |v - V(s)|) \end{bmatrix}
```


イロン スピン スロン スロン 二日

Iterative Policy Evaluation

Application: Player evaluation in Sports Analytics. Players are rated by their observed performance over a set of games. Given dynamic game tracking data, we:

- Apply policy evaluation to estimate the *action value* function Q(s, a), which assigns a value to action *a* given game state *s*.
- Compute the player evaluation metric based on the aggregated impact (GIM, i.e., advantages) of their actions over the entire game or season.

Dynamic programming

For a finite horizon MDP, the iterative policy evaluation algorithm requires the iteration to go through the index with a non-stationary value function. This process is known as dynamic programming. By the Bellman equation,

$$V_{t}(s) = R(s) + \gamma \sum_{s' \in S} \mathbb{P}(s' \mid s, \pi) V_{t+1}(s') , \quad \forall \ t = 0, \dots, H-1,$$

$$V_{T}(s) = 0.$$
 (1)

For episodic MDPs, R and \mathbb{P} can be stochastic and we run this process for many episodes (usually denoted as T/H episodes with horizon H).

A D A A B A A B A A B A

Dynamic programming

Algorithm 2: Iterative policy evaluation with finite horizon

```
Input: S, \mathbb{P}, \mathcal{R}, T

For all states s \in S, V_T(s) \leftarrow 0

t \leftarrow T - 1

while t \ge 0 do

\downarrow For all states s \in S, V_t(s) = \sum_a \pi(a \mid s) \sum_{s', r} \mathbb{P}(s', r \mid s, a) [r + \gamma V_{t+1}(s')]

\downarrow t \leftarrow t - 1

return V_t(s) for all s \in S and t = 0, \dots, T
```


4/8

Iterative Policy Search

The policy evaluation algorithm immediately renders itself to a brute force algorithm called policy search to find the optimal value function V^* and an optimal policy π^* .

The input is an infinite horizon MDP *M* = (*S*, *A*, P, *R*, *γ*) with arbitrary initial state distribution *ρ*₀ and a tolerance *ε* for accuracy of policy evaluation,

Algorithm 3: Policy search

```
\begin{array}{ll} \textbf{Input: } \mathcal{M}, \epsilon \\ \Pi \leftarrow \text{All stationary deterministic policies of M} \\ \pi^* \leftarrow \text{Randomly choose a policy } \pi \in \Pi \\ V^* \leftarrow \text{POLICY EVALUATION } (\mathcal{M}, \pi^*, \epsilon) \\ \textbf{for } \pi \in \Pi \textbf{ do} \\ & & V^{\pi} \leftarrow \text{POLICY EVALUATION } (\mathcal{M}, \pi, \epsilon) \\ & & \textbf{if } V^{\pi}(s) \geq V^*(s) \; \forall \; s \in S \; \textbf{then} \\ & & \downarrow V^* \leftarrow V^{\pi} \\ & & \pi^* \leftarrow \pi \\ \textbf{return } V^*(s), \; \pi^*(s) \; \textbf{for all } s \in S \end{array}
```


Iterative Policy Search

The policy evaluation algorithm immediately renders itself to a brute force algorithm called policy search to find the optimal value function V^* and an optimal policy π^* .

- The Algorithm terminates as it checks all |Π| = |A|^{|S|} = mⁿ deterministic stationary policies (Recall that we are assuming that there exists an optimal policy and in this case there is a deterministic stationary policy that is optimal).
- The run-time complexity of this algorithm is $O(|\mathcal{A}|^{|\mathcal{S}|})$.

Lemma

Policy Search returns the optimal value function and an optimal policy when $\varepsilon = 0$.

イロン イロン イヨン トヨ

Policy Iteration

The policy iteration algorithm applies the Bellman operator, which shows that given any stationary policy π , we can find a deterministic stationary policy that is no worse than the existing policy.

Algorithm 5: Policy iteration
Input: \mathcal{M}, ϵ
$\pi \leftarrow$ Randomly choose a policy $\pi \in \Pi$
while true do
$V^{\pi} \leftarrow \text{POLICY EVALUATION } (\mathcal{M}, \pi, \epsilon)$
$\pi^* \leftarrow \text{POLICY IMPROVEMENT} (\mathcal{M}, V^{\pi})$
$\mathbf{if}V^{\pi^*}=V^{\pi}\mathbf{then}$
$_$ break
else
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$V^{*} \leftarrow V^{\pi}$
return $V^*(s)$, $\pi^*(s)$ for all $s \in S$
g, Shenzher

Policy Iteration

Lemma

Consider an infinite horizon MDP with $\gamma < 1$. The following statements hold.

- 1. When Algorithm 5 is run with $\varepsilon = 0$, it finds the optimal value function and an optimal policy.
- 2. If the policy does not change during a policy improvement step, then the policy cannot improve in future iterations.
- 3. The value functions corresponding to the policies in each iteration of the algorithm form a non-decreasing sequence for every $s \in S$.

Policy Iteration

Policy iteration in Grid World.

→	→	+1.00
	Ť	-1.00
←	ſ	4
	→ ←	→ → ↑ ← ↑

Value Iteration computes the optimal value function and an optimal policy given a known MDP. For every element $U \in \mathbb{R}^n$ the Bellman optimality backup operator B^* is defined as:

$$(B^*U)(s) = \max_{a \in A} \left[R(s,a) + \gamma \sum_{s' \in S} \mathbb{P}(s' \mid s, a) U(s') \right], \quad \forall s \in S.$$
 (1)

Theorem

For a MDP with $\gamma < 1$, let the fixed point of the Bellman optimality backup operator B^* be denoted by $V^* \in \mathbb{R}^n$. Then the policy given by

$$\pi^*(s) = \underset{a \in A}{\operatorname{arg\,max}} \left[R(s,a) + \gamma \sum_{s' \in S} \mathbb{P}(s' \mid s, a) V^*(s') \right], \forall s \in S$$
(1)

will be a stationary deterministic policy. The value function of this policy V^{π^*} satisfies the identity $V^{\pi^*} = V^*$, and V^* is also the fixed point of the operator B^{π^*} .

7/8

A D A A B A A B A A B A

The above theorem suggests a straightforward way to calculate the optimal value function V^* and an optimal policy π^* . The idea is to run fixed point iterations to find the fixed point of B^* . Once we have V^* , an optimal policy π^* can be extracted using the arg max operator in the Bellman optimality equation.

Algorithm 6: Value iteration	
Input: ϵ	
For all states $s \in S$, $V'(s) \leftarrow 0$, $V(s) \leftarrow \infty$	
$\mathbf{while} \; \ V - V'\ _{\infty} > \epsilon \; \mathbf{do}$	
$V \leftarrow V'$	
For all states $s \in S$, $V'(s) = \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} \mathbb{P}(s' \mid s, a) V(s') \right]$	
$V^* \leftarrow V$ for all $s \in S$	
$\label{eq:production} \pi^* \leftarrow \operatorname*{argmax}_{a \in A} \left[R(s,a) + \gamma \sum_{s' \in S} \mathbb{P}(s' \mid s,a) V^*(s') \right] \ , \ \forall \ s \in S$	香港中文大學(深圳)
return $V^*(s), \pi^*(s)$ for all $s \in S$	The Chinese University of Hong Kong, Shenzhen

Value Iteration in Grid World.

Policy after 100 iterations					
→	→	\rightarrow	+1.00		
Ť		Ť	-1.00		
Ť	←	Ť	←		

Value function after 100 iterations					
+0.64	+0.74	+0.85	+1.00		
+0.57		+0.57	-1.00		
+0.49	+0.43	+0.48	+0.28		

香港甲丈大学(深圳) The Chinese University of Hong Kong, Shenzhen

Question and Answering (Q&A)

