Lecture 10 - Iterative methods

Guiliang Liu
The Chinese University of Hong Kong, Shenzhen

DDA4230: Reinforcement Learning
Course Page: [Click]


https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

DDA 4230 Resources

Please join our Slack group. Please check our course page.

https://join.slack.com/t/ https://guiliang.github.io/courses/
slack-us51977/shared_invite/ cuhk-dda-4230/dda_4230.html
zt-22g8b40v8-09Ss900G3~8hXHwWyd1lCpw B PR ECGRID

The Chinese University of Hong Kong, Shenzhen

2/8


https://join.slack.com/t/slack-us51977/shared_invite/zt-22g8b40v8-0qSs9o0G3~8hXHwWydlCpw
https://join.slack.com/t/slack-us51977/shared_invite/zt-22g8b40v8-0qSs9o0G3~8hXHwWydlCpw
https://join.slack.com/t/slack-us51977/shared_invite/zt-22g8b40v8-0qSs9o0G3~8hXHwWydlCpw
https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html
https://guiliang.github.io/courses/cuhk-dda-4230/dda_4230.html

lterative Policy Evaluation
The iterative policy evaluation algorithm constructs a contraction when v < 1, which
gives an arbitrarily close value function estimation of a given policy.
® The update V(s) =3 7(a|s)> ., P(s',r|s,a)[r+yV(s')] forms a contraction,
such that given V,V’, ||BV — BV'|| < ||V — V'||ec where B denotes the operator.

Algorithm 1: Iterative policy evaluation
Input: Policy 7, threshold € > 0
Output: Value function estimation V =~ V7™
Initialize A > € and V arbitrarily
while A > e do

A=0
for s € S do
v="V(s)
V(S) = Za 7r(a | S) Zs’,r ]P(Slv'r | S,CL) [7‘ + ")/V(SI)] 17%54 HHEF K ECREI
A= maX(A, I'U - V(S)l) &,’gq;‘,‘.% The Chinese University of Hong Kong, Shenzhen

3/8



lterative Policy Evaluation

Application: Player evaluation in Sports Analytics. Players are rated by their observed
performance over a set of games. Given dynamic game tracking data, we:

e Apply policy evaluation to estimate the action value function Q(s,a), which

assigns a value to action a given game state s.

e Compute the player evaluation metric based on the aggregated impact (GIM, i.e.,

advantages) of their actions over the entire game or season.

X
ANKING BEST PLAYER FROM|
ALL 31 TEAMS

NHL Estimate Compute

E X b3l
Dataset Qls, a) GIM P LK FGRID

: Chinese University of Hong Kong, Shenzhen

e

3/8



Dynamic programming

For a finite horizon MDP, the iterative policy evaluation algorithm requires the
iteration to go through the index with a non-stationary value function. This process is

known as dynamic programming. By the Bellman equation,

Vi(s) = R(s)+ 1) _P(s'| 5,m)Veya(s') , VE=0,...,H-1,
s'eS (]_)
VT(S)IO.

For episodic MDPs, R and IP can be stochastic and we run this process for many

g

Y.
ety

episodes (usually denoted as T /H episodes with horizon H).

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

4/8



Dynamic programming

Algorithm 2: Iterative policy evaluation with finite horizon

Input: S,P,R,T

For all states s € S, Vp(s) < 0

t«T-1

while ¢t > 0 do
For all states s € S, Vi(s) = Y, m(a|s) Y. P(s',7 | 5,a) [r +vVit1(s)]
t+—t—1

return V;(s) forallse€ Sand t =0,...,T

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

PG
ety

3

4/8



lterative Policy Search

The policy evaluation algorithm immediately renders itself to a brute force algorithm
called policy search to find the optimal value function V* and an optimal policy 7*.
® The input is an infinite horizon MDP M = (S, A,P,R,y) with arbitrary initial

state distribution pg and a tolerance € for accuracy of policy evaluation,

Algorithm 3: Policy search

Input: M, e
IT + All stationary deterministic policies of M
7* <~ Randomly choose a policy 7 € II
V* + POLICY EVALUATION (M, 7%, €)
for m € II do
V7™ < POLICY EVALUATION (M, 7, €)
if V7(s) > V*(s) Vs€ S then
V*«VT
™ T
return V*(s), n*(s) for all s € S

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

5/8



lterative Policy Search

The policy evaluation algorithm immediately renders itself to a brute force algorithm

called policy search to find the optimal value function V* and an optimal policy 7*.

e The Algorithm terminates as it checks all || = |.A|lSl = m" deterministic
stationary policies (Recall that we are assuming that there exists an optimal policy

and in this case there is a deterministic stationary policy that is optimal).
* The run-time complexity of this algorithm is O(|.A4|1°]).
Lemma

Policy Search returns the optimal value function and an optimal policy when € = 0.
%) & %P XX ORI

&Y
c 54“,‘.,'_ The Chinese University of Hong Kong, Shenzhen

5/8



Policy Iteration
The policy iteration algorithm applies the Bellman operator, which shows that given
any stationary policy 7, we can find a deterministic stationary policy that is no worse

than the existing policy.

Algorithm 4: Policy improvement Algorithm 5: Policy iteration

Input: V7 Input: M, e

#i(s) ar%é":ax [R(s,0) +7 X yes P(s' | 5,)V7(s)] , Vs €S 7 < Randomly choose a policy 7 € II
return 7(s) for all s € § while true do

V™ + POLICY EVALUATION (M, ,€)
m* + POLICY IMPROVEMENT (M, V™)
if V™" =V~ then

The output of Algorithm 4 is at least as good | break
as the policy 7 corresponding to the input etse;rﬁw*

ViV

H V
value function V*, and represents a greedy return V*(s), 7*(s) for all s € §

attempt to improve the policy.

g, Shenzhen

6/8



Policy Iteration

Lemma
Consider an infinite horizon MDP with v < 1. The following statements hold.

1. When Algorithm 5 is run with € =0, it finds the optimal value function and an
optimal policy.

2. If the policy does not change during a policy improvement step, then the policy
cannot improve in future iterations.

3. The value functions corresponding to the policies in each iteration of the algorithm

form a non-decreasing sequence for every s € S.

o

#oF LK ERYD

e Chinese University of Hong Kong, Shenzhen

6/8



Policy lteration

Policy iteration in Grid World.

T . T

—

1

T

F & T XK F CRID
The Chinese University of Hong Kong, Shenzhen
o =


https://gibberblot.github.io/rl-notes/single-agent/policy-iteration.html

Value lteration

Value lteration computes the optimal value function and an optimal policy given a
known MDP. For every element U € R" the Bellman optimality backup operator B* is

defined as:

(B*U)(s) = max R(s,a)+7> P(s'|s,a)U(s)|, Vs€S. (1)

ac
s'eS

EH
cIrren

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

3

7/8



Value lteration

Theorem

For a MDP with vy < 1, let the fixed point of the Bellman optimality backup operator
B* be denoted by V* € R". Then the policy given by

m*(s) = argmax sa—l—}/ZP |s,a)V*(s')| ,VseS (1)

acA s'eS

will be a stationary deterministic policy. The value function of this policy V* satisfies

the identity V*® = V*, and V* is also the fixed point of the operator B* .
B #2vx k%09

cHrt The Chinese University of Hong Kong, Shenzhen

3

7/8



Value lteration

The above theorem suggests a straightforward way to calculate the optimal value
function V* and an optimal policy 7*. The idea is to run fixed point iterations to find
the fixed point of B*. Once we have V*, an optimal policy * can be extracted using

the arg max operator in the Bellman optimality equation.

Algorithm 6: Value iteration

Input: €
For all states s € S, V'(s) - 0, V(s) < oo
while [[V — V']l > ¢ do
Vv
\\ For all states s € S, V'(s) = max [R(s,0) + 7Y yesP(s' | 5,0)V (s)]

V*«<Viorallse S
™ argma.x [R(s,a) + 7Y gesP(s' | s,a)V*(s)] ,VseS
€A

return V (s), m(s) for all s € S

FEF XK FEEID

et The Chinese University of Hong Kong, Shenzhen

7/8



Value lteration in Grid World.

Policy after 100 iterations
- - -
T . T

Value lteration

Value function after 100 iterations
+0.64 +0.74 +0.85
o . o
+0.49

+0.43 +0.48 +0.28

AT XK F (HRI)D

The Chinese University of Hong Kong, Shenzhen



https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html

Question and Answering (Q&A)

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

8/8



