
A Brief Survey on Actor-Critic Methods

Abstract

This literature review offers a comprehensive analysis of actor-critic methods in
model-free reinforcement learning, a key area combining policy-based and value-
based approaches. These methods have gained prominence for their effective
balance of exploration and exploitation tasks and reduced variance during train-
ing. The review traces the evolution of actor-critic algorithms from foundational
concepts to advanced variations incorporating deep learning. It critically examines
various algorithms, highlighting their strengths and weaknesses. Additionally,
the review addresses the practical challenges and theoretical limitations of these
methods, providing insights into their real-world applicability while also providing
open questions for potential future research in this area.

1 Introduction

Reinforcement Learning (RL) is a branch of machine learning and artificial intelligence which aims
to create systems capable of learning optimal behaviors through iterative interactions with their
environment. This domain of artificial intelligence is pivotal for developing agents that can learn and
improve over time using a trial-and-error approach, applicable across a spectrum of applications from
robotics to software-based agents in natural language processing and multimedia [1].

Actor-critic methods are one of the most important concepts that are central to the advances in deep
reinforcement learning (DRL). It merges the benefits of policy-based and value-based approaches
within a cohesive framework. These methods have been instrumental in propelling DRL to the
forefront of AI research, enabling learning in complex scenarios such as video games and robotics,
where traditional algorithms falter [1]. The intrinsic balance of exploration and exploitation tasks,
coupled with the management of variance during training, proves that actor-critic methods are a
potent tool for a variety of RL challenges [1].

The development of actor-critic methods has been marked by significant evolution, from the founda-
tional structures to contemporary variations that integrate deep learning [2][3]. This literature review
aims to trace this advancement, offering a comprehensive dive into the actor-critic paradigm, its
iterations, and its practical implementations. It aims to present a critical examination of the strengths,
limitations, and applications of various actor-critic algorithms.

The rest of the paper is structured as follows: Section 2 introduces the foundational actor and critic
components, setting the stage for the concepts discussed in the paper. Section 3 explores the various
variations of actor-critic methods, detailing how each is structured and functions in different contexts.
Section 4 then provides a discussion comparing these variations, focusing on their strengths and
weaknesses in diverse scenarios as well as the challenges and limitations of implementing actor-critic
methods, both in practice and theory. The paper concludes with Section 5, summarizing key insights
from the review, reflecting on the current state of actor-critic methods in reinforcement learning, and
suggesting avenues for future research.

DDA4230 Final Project

Figure 1: Illustration of the Actor-Critic Framework

2 Base actor-critic

2.1 Foundation of actor-critic

In Reinforcement Learning (RL), an agent learns to make decisions through interactions with its
environment. The agent decides what action a (or at) to take depending on the policy π (or πt),
which is the strategy for deciding actions based on the current state. The state s is decided by the
environment depending on the previous state and the action taken, it is the agent’s current situation or
environment. The state-value V (s) and state-action value Q(s, a) functions estimate the expected
return from a state or state-action pair, respectively.

Actor-critic methods in RL utilize a dual-component framework. The actor component makes
decisions based on the policy π [4]. In contrast, the critic evaluates these actions by estimating the
value function V (s), often using methods like Temporal Difference (TD) learning [5]. This integrated
approach allows for a dynamic balance between exploring actions (actor) and providing feedback for
policy improvement (critic) [6].

A simple diagram for the general actor-critic framework is illustrated in Figure 1. The actor receives
the current state from the environment and selects an action based on its policy. This action is then
applied to the environment, which in response provides a new state and an associated reward. The
critic, utilizing the value function, assesses the action by calculating the loss, such as the Temporal
Difference (TD) Error which is based on the difference between predicted and actual rewards. This
error is then used to update both the policy, through the actor, and the value function itself, ensuring
that the actor’s decisions are continually refined for future encounters with the environment.

2.2 The actor model

The actor model in the actor-critic model will try to update the current policy with the guidance of
the state or state-action value functions provided by critic model. The actor model is responsible
for learning a policy π(a|s; θ) that maps states to a probability distribution over actions. We set the
policy to be parameterized by θ, which will be updated by the actor in an effort to maximize the
expected return.

The expected return J(θ), when following policy π, is the expected sum of discounted rewards:

J(θ) = Eπ(θ)

[∞∑
t=0

γtRt

]
, (1)

where γ is the discount factor and Rt is the reward at time t. The actor’s policy parameters are
updated by performing gradient ascent on J(θ):

2

θt+1 = θt + α∇θJ(θt), (2)

where α represents the learning rate.

For the base actor-critic algorithm, the actor’s parameter update utilizes a one-step return and
incorporates the value function estimated by the critic as a baseline. The estimated value function
V̂ (s, w), parameterized by w, serves to reduce the variance of the actor’s update step:

θt+1 = θt + α
(
rt + γV̂ (St+1, w)− V̂ (St, w)

)
∇θ log πθ(at|St). (3)

This value function V̂ (s, w) is learned by the critic model and is crucial for guiding the actor towards
more rewarding actions.

2.3 The critic model

The critic model in the actor-critic framework estimates the value function, which will serve as an
evaluator for the policy executed by the actor. This value function can be either a state-value function
V (s;w) or an action-value function Q(s, a;w), both will parameterized by w.

The critic’s objective is to minimize the loss between the estimated value function and the actual
return. The loss function, often referred to as the Temporal Difference (TD) error, is defined as:

δt = rt + γV̂ (St+1, w)− V̂ (St, w), (4)

where δt is the TD error at time t, rt is the reward, γ is the discount factor, and V̂ (s, w) is the
estimated value function, parameterized by w. The TD error reflects the difference between the
predicted value of the current state and the estimated value of the next state, adjusted by the received
reward.

The critic updates its value function parameters w by applying gradient descent to minimize the TD
error:

wt+1 = wt + βδt∇wV̂ (St, w), (5)

where β is the learning rate for the critic. This update process enables the critic to make more accurate
predictions of future rewards, which in turn, provides more informative feedback to the actor’s policy.

2.4 Base actor-critic algorithm

Algorithm 1 Base actor-critic algorithm
1: Initialize the policy parameters θ and value function parameters w randomly
2: for each episode do
3: Initialize s, the first state of the episode
4: for t = 0, 1, . . . , T − 1 do
5: Sample a ∼ π(a|s, θ)
6: Take action a and observe s′, r
7: Compute delta δ ← r + γV̂ (s′, w)− V̂ (s, w)

8: Update Critic: w ← w + βδ∇wV̂ (s, w)
9: Update Actor: θ ← θ + αδ∇θ log π(a|s, θ)

10: s← s′

3 Variations of actor-critic methods

3.1 Advantage Actor-Critic methods

Advantage Actor-Critic Methods, encompassing both Asynchronous Advantage Actor-Critic (A3C)
and its synchronous counterpart, Advantage Actor-Critic (A2C), is a variation of the base actor-critic

3

method that uses a core concept of the advantage function to guide policy updates. A3C, notable for
its asynchronous update mechanism, utilizes multiple agents operating in parallel environments [7],
thereby enhancing exploration and robustness of the learning process. In contrast, A2C synchronizes
the updates across all agents, leading to a more stable and consistent training experience. Both
methods incorporate entropy in their policy updates [7] to promote exploration and mitigate the risk
of premature convergence to sub-optimal policies.

The update steps for the actor and critic is the same for A2C and A3C. For both update steps the
method makes use of the advantage function, defined as:

A = r + γV̂ (s′, w)− V̂ (s, w) (6)

Then both models are updated as below,

Actor Update in A2C:

θt+1 = θt + αA∇θ log π(a|s, θ) + η∇θH(π(·|s, θ)) (7)

where H(π(·|s, θ)) is the entropy of the policy.

Critic Update in A2C::
wt+1 = wt + β∇wA

2 (8)

The entropy term H(π(·|s, θ)) in the A2C and A3C algorithm is calculated to encourage exploration
by the policy. It is defined as the sum over all actions of the negative product of the policy’s probability
of selecting an action and the logarithm of that probability:

H(π(·|s, θ)) = −
∑
a

π(a|s, θ) log π(a|s, θ) (9)

This entropy term is added to the policy gradient, ensuring that the policy avoids premature conver-
gence to a deterministic behavior and maintains a level of stochasticity in its action selection.

These updates lead to more stable and efficient learning in A2C and A3C compared to the base
actor-critic method. The general algorithm for A2C is exactly the same as base actor-critic method,
with the update steps for the actor and critic model being consistent with the mathematical notations
above.

For the A3C method the general algorithm is given as follows:

Algorithm 2 A3C (Asynchronous Advantage Actor-Critic) Algorithm
1: Initialize global policy parameters θ and global value function parameters w randomly
2: Initialize multiple agents with their own set of parameters θ′ and w′

3: for each agent do
4: for each episode do
5: Initialize s, the first state of the episode
6: for t = 0, 1, . . . , T − 1 do
7: Sample a ∼ π(a|s, θ′)
8: Take action a and observe s′, r
9: Compute advantage A← r + γV̂ (s′, w′)− V̂ (s, w′)

10: Accumulate gradients w.r.t. θ′ and w′

11: s← s′

12: Perform asynchronous update of global θ and w using accumulated gradients
13: Update local parameters θ′ ← θ, w′ ← w

Both advantage actor-critic methods offer unique advantages in reinforcement learning. Other
than that the incorporation of the advantage function, the entropy term leads to more efficient
learning and better exploration. A2C, with its synchronous update approach, is efficient in utilizing
computational resources like GPUs while A3C capitalizes on parallel, asynchronous actor-learners,
which accelerates training speed and enhances exploration efficiency. However, both methods face
challenges in balancing exploration with exploitation and require careful tuning of hyperparameters.

4

A2C can be sensitive to hyperparameter settings, impacting its exploration efficiency. A3C, while
offering a more robust policy due to its multiple independent agents, introduces complexity in
implementation, particularly with asynchronous updates.

The Advantage Actor-Critic methods each brings unique strengths to reinforcement learning. A2C’s
synchronous updates and computational efficiency make it well-suited for controlled, resource-limited
environments, while A3C’s asynchronous approach accelerates learning and enhances exploration
through parallel actor-learners.

3.2 Soft Actor-Critic (SAC) method

The Soft Actor-Critic (SAC) algorithm is an off-policy, model-free reinforcement learning approach
that integrates the maximum entropy framework. The main difference of this method is that it
integrates the entropy term directly in the objective function as well as being an off-policy method.
This method aims to simultaneously maximize expected return and entropy, promoting a balance
between efficient exploration and exploitation [8].

SAC’s objective function can be described as:

J(π) = E(st,at)∼ρπ

[∑
t

γt(r(st, at) + τH(π(·|st)))

]
, (10)

where H(π(·|st)) represents the entropy of the policy at state st, and τ is the temperature parameter
that balances the importance of entropy versus reward.

The updates for the actor and critic model in SAC are given by:

Actor Update in SAC:

θt+1 = θt + α∇θ (log π(at|st, θ)(Qθ(st, at)− V (st))) (11)

Critic Update in SAC:

wt+1 = wt + β (V (st+1)− τ log π(at+1|st+1, θ)) (12)

The algorithm for SAC is given below:

Algorithm 3 Soft Actor-Critic (SAC) Algorithm
1: Initialize policy parameters θ, value function parameters w, and temperature parameter τ
2: for each episode do
3: Initialize s, the first state of the episode
4: for t = 0, 1, . . . , T − 1 do
5: Sample at ∼ π(a|s, θ)
6: Take action at, observe reward rt and next state s′

7: Update actor: θt+1 = θt + α∇θ (log π(at|st, θ)(Qθ(st, at)− V (st)))
8: Update critic: wt+1 = wt + β (V (st+1)− τ log π(at+1|st+1, θ))
9: s← s′

SAC’s incorporation of entropy regularization promotes better exploration, leading to more robust
policy learning, especially in environments with high-dimensional, continuous action spaces. The
off-policy nature of SAC also allows for more efficient use of past experiences, enhancing sample
efficiency. However, SAC can be even more complex in terms of hyperparameter tuning, especially
in determining the optimal balance between exploration (entropy) and exploitation (reward) since the
entropy term is integrated directly into the objective function instead of the update steps.

SAC presents a novel approach in the actor-critic algorithm family, with its distinctive emphasis
on entropy maximization for improved exploration and policy robustness. Its off-policy nature and
efficient use of past experiences make it a compelling choice for complex reinforcement learning
tasks.

5

3.3 Deep Deterministic Policy Gradient (DDPG) method

Deep Deterministic Policy Gradient (DDPG) is an off-policy actor-critic method that uniquely blends
ideas from Deep Q-Networks (DQN) and deterministic policy gradients. Unlike the base actor-critic
and its variations like A2C and A3C, which typically employ stochastic policies, DDPG operates with
a deterministic policy in continuous action spaces [9]. This deterministic approach, combined with
techniques like experience replay and target networks [9], distinguishes DDPG from other actor-critic
methods.

The objective function in DDPG follows a Q-learning style update for the critic and a policy gradient
update for the actor. The critic’s objective is to approximate the Q-function, while the actor aims to
maximize the Q-value predicted by the critic. The updates can be described mathematically as:

Actor Update in DDPG:

θt+1 = θt + α∇θπ(st, θ)∇aQ(st, a, w)|a=π(st,θ) (13)

Critic Update in DDPG:

wt+1 = wt + β∇w

(
Q(st, at, w)− (rt + γQ(st+1, π(st+1, θ), w

′))2
)

(14)

The general algorithm for DDPG is given below:

Algorithm 4 DDPG (Deep Deterministic Policy Gradient) Algorithm
1: Initialize the policy parameters θ and Q-function parameters w randomly
2: Initialize target policy parameters θ′ and target Q-function parameters w′

3: Initialize replay buffer D
4: for each episode do
5: Initialize s, the first state of the episode
6: for t = 0, 1, . . . , T − 1 do
7: Sample action at ∼ π(a|st, θ) according to the current policy
8: Take action at and observe reward rt and next state st+1

9: Store transition (st, at, rt, st+1) in D
10: Sample a random minibatch of transitions from D
11: Compute target value y = rt + γQ(st+1, π(st+1, θ

′), w′)

12: Update Critic: w ← w + β∇w (Q(st, at, w)− y)
2

13: Update Actor: θ ← θ + α∇θπ(st, θ)∇aQ(st, a, w)|a=π(st,θ)

14: Update target networks: θ′ ← τθ + (1− τ)θ′

15: w′ ← τw + (1− τ)w′

16: st ← st+1

A few advantages of DDPG are that it is particularly effective in environments with continuous action
spaces, where its deterministic policy allows for precise action selection. Additionally, the algorithm’s
use of experience replay and target networks helps stabilize the training process. However, some
disadvantages faced by DDPG include its tendency for limited exploration due to its deterministic
nature, which can lead to getting trapped in local optima. They also suffer from sample inefficiency
and require careful hyperparameter tuning to optimize performance.

DDPG stands out for its application in environments that demand precise and continuous control
actions. Its deterministic policy gradient approach, combined with stability mechanisms borrowed
from DQN, provides a powerful tool for solving complex reinforcement learning problems.

3.4 Twin-Delayed Deep Deterministic Policy Gradient (TD3) method

Twin-Delayed Deep Deterministic Policy Gradient (TD3) is an advanced off-policy actor-critic
method that enhances the Deep Deterministic Policy Gradient (DDPG) framework. TD3 addresses
DDPG’s overestimation of Q-values by introducing three key improvements: Double Q-Learning,
Delayed Policy Updates, and Target Policy Smoothing [6],[10]. Double Q-Learning employs two
critic networks to provide a more conservative Q-value estimation, reducing bias. Delayed Policy
Updates slow down the frequency of policy updates compared to the critic updates, enhancing the

6

stability of learning. Target Policy Smoothing adds noise to the action chosen by the target policy,
improving robustness.

The TD3 algorithm’s mathematical updates are as follows:

Actor Update in TD3:
θt+1 = θt + α∇θπ(st, θ)∇aQ(st, a, w)|a=π(st,θ) (15)

Critic Update in TD3:
wt+1 = wt + β∇w min

i=1,2
(Qi(st, at, w)− (rt + γQi(st+1, π(st+1, θ), w

′))2) (16)

Below is the general algorithm for the TD3 method:

Algorithm 5 TD3 (Twin-Delayed Deep Deterministic Policy Gradient) Algorithm
1: Initialize the policy parameters θ and two sets of Q-function parameters w1, w2 randomly
2: Initialize target policy parameters θ′ and target Q-function parameters w′

1, w′
2

3: Initialize replay buffer D
4: for each episode do
5: Initialize s, the first state of the episode
6: for t = 0, 1, . . . , T − 1 do
7: Sample action at ∼ π(a|st, θ) according to the current policy and add noise
8: Take action at and observe reward rt and next state st+1

9: Store transition (st, at, rt, st+1) in D
10: Sample a random minibatch of transitions from D
11: Compute target value y = rt + γmini=1,2 Qi(st+1, πtarget(st+1, θ

′), w′
i)

12: Update Critics: For i = 1, 2,
13: wi ← wi + β∇wi

(Qi(st, at, wi)− y)
2

14: if t mod d then
15: Update Actor: θ ← θ + α∇θπ(st, θ)∇aQ1(st, a, w1)|a=π(st,θ)

16: Update target networks: θ′ ← τθ + (1− τ)θ′

17: w′
i ← τwi + (1− τ)w′

i for i = 1, 2
18: st ← st+1

Advantages of TD3 include its reduced overestimation bias and improved stability in learning,
especially in environments with continuous action spaces. However, the complexity introduced by
twin critics and the delayed update mechanism can increase computational demands and slow down
learning.

TD3 represents a significant step forward in reinforcement learning for continuous control tasks,
offering a more stable and reliable policy learning process by mitigating DDPG’s overestimation bias.

3.5 Actor-Critic TRPO Method

Actor-Critic TRPO is an on-policy algorithm that primarily addresses the challenge of large policy
updates [6][11], which can destabilize learning in traditional actor-critic methods. The key distinction
of TRPO lies in its implementation of a trust region, which effectively constrains the policy updates
to ensure that the new policy is not too far from the old one. This constraint is quantified using the
Kullback-Leibler (KL) divergence. It optimizes a surrogate objective function under the trust region
constraint, which restricts the extent of divergence between the new and old policies.

For TRPO, the surrogate objective function for the policy (actor) is given by:

LTRPO(θ) = Et

[
πθ(at|St)

πθold(at|St)
ATRPO(St, at)

]
, (17)

where πθ(at|St) is the policy under the current parameters θ, πθold(at|St) is the policy under the old
parameters θold, and ATRPO(St, at) is the advantage function at time t. The expectation Et denotes
the average over a finite batch of samples.

7

The actor’s parameter update in TRPO is performed using a trust region optimization approach. The
objective is to maximize the surrogate objective function while ensuring that the KL divergence
between the new and old policies remains within a predefined limit. This can be represented as:

θt+1 = θt + α∇θL
TRPO(θt) s.t. DKL(πθold(·|St)||πθt(·|St)) ≤ δ, (18)

The critic in TRPO updates its value function parameters w by minimizing the mean-squared error of
the value function estimate:

wt+1 = wt + β∇w (V (St, w)− rt)
2
, (19)

A general algorithm for TRPO actor critic method is as follows:

Algorithm 6 TRPO (Trust Region Policy Optimization) Algorithm
1: Initialize the policy parameters θ and value function parameters w randomly
2: Initialize the old policy parameters θold
3: for each episode do
4: Initialize s, the first state of the episode
5: for t = 0, 1, . . . , T − 1 do
6: Sample a ∼ π(a|s, θ)
7: Take action a and observe s′, r
8: Compute advantage estimate ATRPO(s, a)
9: Compute surrogate objective LTRPO(θ)

10: Update Critic: w ← w − β∇w (V (s, w)− r)
2

11: Update Actor: Perform constrained optimization to find θt+1

12: θold ← θ
13: s← s′

TRPO’s main strength lies in its robust management of large policy updates, making it highly
suitable for both continuous and discrete action spaces. The algorithm’s trust region approach
ensures balanced and stable policy updates, avoiding instability while allowing significant learning
progress. However, this method faces challenges such as computational intensity due to its use of
second-order optimization methods, making it less practical for problems with large state or action
spaces.Additionally, while the trust region constraint stabilizes training, it can also slow down the
convergence process.

TRPO’s innovative approach to managing policy updates through the trust region concept and KL
divergence constraint makes it adept at handling complex environments where maintaining a balance
between exploration and exploitation is crucial.

3.6 Actor-Critic PPO Method

Proximal Policy Optimization (PPO) is an on-policy algorithm that builds upon the ideas of TRPO,
aiming to simplify and improve the efficiency of policy optimization in reinforcement learning. PPO
stands out for its novel approach to handling policy updates, striking a balance between complexity
and performance [6]. Unlike TRPO, which uses a complex second-order method to maintain the trust
region, PPO achieves a similar objective with a clipped surrogate objective function, simplifying the
optimization process while still controlling the size of policy updates.

The surrogate objective function for PPO is defined as follows:

LPPO(θ) = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] , (20)

where rt(θ) =
πθ(at|St)

πθold
(at|St)

is the probability ratio, At is the advantage function at time t, and ϵ is
a hyperparameter defining the clipping range. The expectation Et indicates averaging over a finite
batch of samples.

The actor (policy) updates in PPO are performed via gradient ascent on this clipped objective:

8

θt+1 = θt + α∇θL
PPO(θt), (21)

The critic (value function) updates in PPO are similar to those in TRPO and base actor-critic methods:

wt+1 = wt + β∇w (V (St, w)− rt)
2
, (22)

The general algorithm for PPO actor critic method is as follows:

Algorithm 7 PPO (Proximal Policy Optimization) Algorithm
1: Initialize the policy parameters θ and value function parameters w randomly
2: for each episode do
3: Initialize s, the first state of the episode
4: for t = 0, 1, . . . , T − 1 do
5: Sample a ∼ π(a|s, θ)
6: Take action a and observe s′, r
7: Compute advantage estimate APPO(s, a)
8: Compute surrogate objective LPPO(θ)

9: Update Critic: w ← w + β∇w (V (s, w)− r)
2

10: Update Actor: θ ← θ+α∇θ min
(
rt(θ)A

PPO(s, a), clip(rt(θ), 1− ϵ, 1 + ϵ)APPO(s, a)
)

11: s← s′

12: θold ← θ

PPO’s main advantage is its ease of implementation and efficiency compared to TRPO. The clipped
objective function simplifies the optimization while still effectively constraining the policy updates,
making PPO suitable for a wide range of applications. However, PPO may sometimes exhibit reduced
sample efficiency and require careful tuning of its clipping parameter ϵ to balance exploration and
exploitation.

PPO’s simplicity and effectiveness in handling policy updates have made it a popular choice in
reinforcement learning tasks, offering a practical alternative to more complex algorithms like TRPO.
PPO’s balance of performance and simplicity makes it a significant tool for advancing reinforcement
learning applications.

4 Discussion

4.1 Comparison and evaluation of actor critic methods

In this section, we compare the key actor-critic methods we have discussed in this review, which are
A2C/A3C, SAC, DDPG, TD3, TRPO, and PPO. We will focus on their policy types, suitability for
different action spaces, and computational costs.

A2C and A3C (Advantage Actor-Critic): Both methods are on-policy and excel in discrete action
spaces. A2C, being synchronous, offers more stable updates, while A3C’s asynchronous updates
provide faster learning but increased complexity. They are computationally less demanding than
some of the more advanced methods.

SAC (Soft Actor-Critic): An off-policy method effective in continuous action spaces, SAC incorpo-
rates entropy into the objective function, promoting exploration. It balances sample efficiency with
computational demand, making it suitable for complex environments.

DDPG: An off-policy method optimized for continuous action spaces. It is known for precise control
but suffers from limited exploration and high computational costs due to its use of replay buffers and
target networks.

TD3: An advancement of DDPG, TD3 is off-policy, suitable for continuous spaces. It addresses the
overestimation bias of DDPG, offering more stable learning at a slightly higher computational cost
due to its twin-critic architecture.

9

TRPO: An on-policy method applicable in both discrete and continuous spaces. TRPO’s trust region
approach for policy updates ensures stability but at a high computational cost due to its second-order
optimization methods.

PPO: An on-policy algorithm similar to TRPO but with a simpler implementation. PPO is effective
in both discrete and continuous spaces and strikes a balance between computational efficiency and
policy update stability.

Table 1: Comparison of Actor-Critic Methods

Method Policy Type Computational Cost Action Space
A2C/A3C On-Policy Moderate Discrete
SAC Off-Policy Relatively High Continuous
DDPG Off-Policy High Continuous
TD3 Off-Policy Relatively High Continuous
TRPO On-Policy Very High Both
PPO On-Policy Moderate to High Both

In summary, A2C/A3C and SAC can both provide efficient learning in their respective domains,
while DDPG and TD3 offer precise control in continuous spaces but with higher computational needs.
TRPO provides robust policy updates across different spaces but is computationally intensive. PPO
emerges as a balanced alternative, offering simplicity and efficiency, making it widely applicable.

4.2 Challenges and limitations of actor critic methods

Despite their advancements, actor-critic methods face several challenges and limitations. One
significant challenge is the balance between exploration and exploitation, particularly in complex
environments. Additionally, these methods often require extensive hyperparameter tuning, which
can be a resource-intensive process. Another limitation is their computational cost, especially for
methods that use second-order optimization techniques like TRPO. These methods can also suffer
from stability issues during training, making them less reliable in certain scenarios. Furthermore, the
implementation details, including network architectures and loss functions, significantly influence
the performance of these algorithms, adding to the complexity of their effective application. Future
research could focus on addressing these limitations to enhance the efficiency and robustness of
actor-critic methods in more diverse and challenging environments.

5 Conclusion

Actor-critic methods and their variations represent a significant advancement in reinforcement
learning, addressing complex decision-making in diverse environments. These methods, including
DDPG, TRPO, PPO, and others, have contributed to precise control and robust policy updates in both
continuous and discrete action spaces. Despite their strengths, challenges like balancing exploration
and exploitation, computational demands, hyper-parameter tuning, and stability issues still persist.
Some research has been done to address these problems [12][13] but future research can be more
directed towards overcoming these limitations, enhancing efficiency, and adapting these methods
for broader real-world applications, from autonomous systems to financial modeling, indicating a
promising direction for the field of reinforcement learning.

10

References

[1] Deep Reinforcement Learning: A Brief Survey. (2017, November 1). IEEE Journals & Magazine | IEEE
Xplore. https://ieeexplore.ieee.org/document/8103164

[2] Fan, Z. (2019, March 4). Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space.
arXiv.org. https://arxiv.org/abs/1903.01344

[3] Merdivan, E. (2019, July 2). Modified Actor-Critics. arXiv.org. https://arxiv.org/abs/1907.01298

[4]: A Survey of Actor-Critic Reinforcement Learning: Standard and Natural Policy Gradients. (2012, November
1). IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/document/6392457

[5]: Tesauro, G. (1995). Temporal Difference Learning and TD-Gammon. Retrieved from
https://cling.csd.uwo.ca/cs346a/extra/tdgammon.pdf

[6]: Dutta, D., & Upreti, S. R. (2022, July 12). A survey and comparative evaluation of actor-
critic methods in process control. The Canadian Journal of Chemical Engineering, 100(9), 2028–2056.
https://doi.org/10.1002/cjce.24508

[7] Mnih, V. (2016, February 4). Asynchronous Methods for Deep Reinforcement Learning. arXiv.org.
https://arxiv.org/abs/1602.01783

[8] Haarnoja, T. (2018, January 4). Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor. arXiv.org. https://arxiv.org/abs/1801.01290

[9] Lillicrap, T. P. (2015, September 9). Continuous control with deep reinforcement learning. arXiv.org.
https://arxiv.org/abs/1509.02971

[10] Zhang, Z., Li, X., An, J., Man, W., & Zhang, G. (2020, December 29). Model-Free Attitude Con-
trol of Spacecraft Based on PID-Guide TD3 Algorithm. International Journal of Aerospace Engineering.
https://doi.org/10.1155/2020/8874619

[11] Schulman, J. (2015, February 19). Trust Region Policy Optimization. arXiv.org.
https://arxiv.org/abs/1502.05477

[12] Andrychowicz, M. (2020, October 2). What Matters for On-Policy Deep Actor-Critic Methods? A
Large-Scale Study. OpenReview. https://openreview.net/forum?id=nIAxjsniDzg

[13] Fujimoto, S. (2018, February 26). Addressing Function Approximation Error in Actor-Critic Methods.
arXiv.org. https://arxiv.org/abs/1802.09477

11

	Introduction
	Base actor-critic
	Foundation of actor-critic
	The actor model
	The critic model
	Base actor-critic algorithm

	Variations of actor-critic methods
	Advantage Actor-Critic methods
	Soft Actor-Critic (SAC) method
	Deep Deterministic Policy Gradient (DDPG) method
	Twin-Delayed Deep Deterministic Policy Gradient (TD3) method
	Actor-Critic TRPO Method
	Actor-Critic PPO Method

	Discussion
	Comparison and evaluation of actor critic methods
	Challenges and limitations of actor critic methods

	Conclusion

