
DDA 4230: Reinforcement learning CUHKSZ

Assignment 1
TA: Bo Yue, Hengming Zhang

Total points available: 100 pts.

Note: Please note that external references are allowed only if you give appropriate reference. There is no
required format of reference. Please elaborate on your answers as well (do not just give a number, etc).

Problem 1: Markov Decision Process I [30 points]

Suppose we have an infinite-horizon, discounted MDP M = ⟨S,A,R, T , γ⟩ with a finite state-action space,
|S×A| < ∞ and 0 ≤ γ < 1. For any two arbitrary sets X and Y,we denote the class of all functions mapping
from X to Y as {X → Y} ≜ {f | f : X → Y}. In the questions that follow, let Q,Q′ ∈ {S ×A → R} be any
two arbitrary action-value functions and consider any fixed state s ∈ S. Without loss of generality, you may
assume that Q(s, a) ≥ Q′(s, a),∀(s, a) ∈ S ×A.

1. Prove that | maxa∈A Q(s, a)−maxa′∈A Q′(s, a′)| ≤ maxa∈A |Q(s, a)−Q′(s, a)|. (10 points)

2. Prove that|min
a∈A

Q(s, a)− min
a′∈A

Q′(s, a′)| ≤ max
a∈A

|Q(s, a)−Q′(s, a)|. (10 points)

3. Prove that the Bellman operator B (BV = maxa
[
r(s, a) + γEs′∼P (s′|s,a)V (s′)

]
) is a contraction oper-

ator for γ ∈ (0, 1) with respect to the infinity norm ∥ · ∥∞ (you may want to search up the definition
for this). Specifically, we want to prove that

∥BV −BV ′∥∞ ≤ γ∥V − V ′∥∞ (1)

for any two value functions V and V ′, meaning if we apply it to two different value functions, the
distance between value functions (in the ∞ norm) shrinks after application of the operator to each
element. (10 points)

Problem 2: A 3-State MDP [40 points]

Consider states sA, sB , sC and actions aL, aR. γ = 0.9. Transitions/rewards:

• sA: aL: (sA, r = 0); aR: (sB , r = 0).

• sB : aL: (sA, r = 0); aR: (sC , r = 2).

• sC : terminal/absorbing with 0 reward thereafter (any action leaves you in sC with r = 0).

1. Evaluate a random policy. Let π choose aL/aR with probability 1/2 in sA, sB (action in sC
irrelevant). Compute V π(sA), V

π(sB), V
π(sC). (10 points).

2. Bellman optimality equations. Write V ∗(s) for s ∈ {A,B,C} and express V ∗(A), V ∗(B). (10
points)

3. Solve for the optimal values and policy. Find V ∗(A), V ∗(B), V ∗(C) and an optimal deterministic
policy. (10 points)

4. Performance gap. Compute V ∗(s)−V π(s) for each state and briefly explain the difference in words.
(10 points)
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Problem 3: Bandits Problem [20 points]

Consider a bandit instance with 4 arms and running ϵ-greedy algorithm on this instance. The algorithms
maintain an initial estimate of the reward mean of arm i, µi, and we denote the estimate at time t as µ̂i(t).
The algorithm initialize µ̂i(1) = 0, for all i. Then the algorithm observes the following sequence of actions
and rewards, where At, Rt denote the action and reward at time t:

• t = 1, A1 = 1, R1 = 0.

• t = 2, A2 = 2, R2 = 0.

• t = 3, A3 = 3, R3 = 0.

• t = 4, A4 = 4, R4 = 0.

• t = 5, A5 = 1, R5 = 1.

• t = 6, A6 = 2, R6 = 1.

• t = 7, A7 = 2, R7 = 2.

• t = 8, A8 = 2, R8 = 2.

• t = 9, A9 = 3, R9 = 0.

Which of the actions was definitely exploratory? (Recall ϵ-greedy explore with probability ϵ). (10 points)
Which of the actions was possibly exploratory? (10 points)

Problem 4: Explore and commit [10 points]

Recall the ETC algorithm given in Lecture, and we consider the case where it interacts with a two-armed
bandits. We assume that both arms are 1-subgaussian with mean µ1, µ2 and ∆ = |µ1 − µ2|. We follow the
notations specified in the lecture notes here.

1. Find a new choice of k that is dependent on time horizon T but independent of ∆. Then show that
for your choice of k, there exists a constant C > 0 and the regret is bounded by

R̄T ≤ (∆ + C)T 2/3 .

Hint: Start with the result from Theorem 1 with the two arms case in the lecture note and try to get a
bound independent of ∆.




