
DDA 4230: Reinforcement learning CUHKSZ

Assignment 1
TA: Sheng Xu

Due Date: Oct. 14th, 11:59 pm
Total points available: 100 pts.

Note: Please note that external references are allowed only if you give appropriate reference. There is no
required format of reference. Please elaborate on your answers as well (do not just give a number, etc).

Problem 1: Markov Decision Process I (30 points)

Consider the an infinite horizon MDP with three states, s1, s2, s3 and two actions a0, a1. The transitions are
deterministic. The rewards and transitions are summarized as:

• s1: P (s1 | s1, a0) = 1, r(s1, a0) = 0, P (s2 | s1, a1) = 1, r(s1, a1) = 0.

• s2: P (s1 | s2, a0) = 1, r(s2, a0) = 0, P (s3 | s2, a1) = 1, r(s2, a1) = 0.

• s3: P (s3 | s3, a0) = 1, r(s3, a0) = 1, P (s3 | s3, a1) = 1, r(s3, a1) = 1.

Note that taking any action on s3 will let the agent stay in s3 and receive a reward of 1. Let γ = 0.5 for this
problem.

1. Consider an agent that follows the random policy (take the two actions with equal probability) in state
s1, s2. Find the value function for the random policy for all states.

2. Let V ∗(s1) and V ∗(s2) denote the optimal value of state s1 and s2, respectively. Write down the
Bellman optimality equation for V ∗(s1) and V ∗(s2).

3. Show that V ∗(s1) < V ∗(s2) < 2.

4. Based on the previous two parts, find the optimal value function for s1, s2 and the optimal policy.

Problem 2: Markov Decision Process II (30 points)

In this question, we consider an infinite-horizon MDP M = (S,A, γ, R, P ) with finite state and actions.

1. Let M̂ = (S,A, γ, R̂, P ), where the states and actions spaces are the same with M, but |R̂(s, a) −
R(s, a)| ≤ ϵ,∀s ∈ S,A. Let V̂ ∗ denotes the optimal value function on M̂. Show that V ∗ − V̂ ∗ ≤ ϵ

1−γ .

2. For the M̂ defined in question 1, will M and M̂ have the same optimal policy? Please elaborate on
your answer.

3. Consider an alternative definition of R̂, where R̂(s, a) − R(s, a) = ϵ,∀s ∈ S,A. Let V̂ ∗ denotes the
optimal value function on M̂. Express V̂ ∗ in terms of V ∗.

4. For the M̂ defined in question 3, will M and M̂ have the same optimal policy? Please elaborate on
your answer.
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Problem 3: Bandits Problem I (20 points)

Let T ∈ N+ and 0.5 < p ≤ 1 be constants and assume the following T -round casino game. In the beginning,
the gambler has a capital of 1. At each round, the gambler can stack any portion of the capital (when the
capital is 0 the bet can only be 0). The gambler wins each round with probability p, independently of other
rounds. If the gambler wins a round, the bet doubles up. If the gambler loses a round then the bet is lost.
The goal is to maximize the expected capital after all T rounds of play.

1. Formulate this game into a discrete-time stationary or non-stationary Markov decision process (S,A, T ,R, ρ0, γ)
with a finite horizon T .

2. Find an optimal policy.

Problem 4: Bandits Problem II (20 points)

Consider a multi-arm bandit problem with k = 5 actions, denoted 1, 2, 3, 4, and 5. Consider applying to
this problem a bandit algorithm using ε-greedy action selection, sample-average action-value estimates, and
initial estimates of Q1(a) = 0 for all a.

1. Suppose the initial sequence of actions and rewards is A1 = 1, R1 = 2, A2 = 2, R2 = 2, A3 = 3, R3 =
1, A4 = 2, R4 = 3, A5 = 3, R5 = 0, A6 = 4, R6 = 5. On some of these time steps the ε case may have
occurred causing an action to be selected at random. On which time steps did this definitely occur?
On which time steps could this possibly have occurred?

(Hint: Write down the sequence of values for each action at each time step. If the selected action’s
value is not the maximum one, it must be selected at random caused by ϵ. In addition, remember that
the ϵ may impact at each time step regardless of the action values)


