Due Date: Oct. 9th, 11:59 pm
Total points available: 100 pts .
Note: Please note that external references are allowed only if you give appropriate reference. There is no required format of reference. Please elaborate on your answers as well. (not just give a number etc.)

Problem 1: Markov Decision Process [20 pts.]

Figure 1: MDP for Problem 1. States are represented by circles and actions by hexagons. p, q denotes the transition probability and $p, q \in[0,1]$. The reward is 10 for state $s_{3}, 1$ for state s_{2} and 0 otherwise.

For this question, consider the infinite horizon (where time $t=\infty$) MDP represented by Figure 1 with discount factor $\gamma \in(0,1)$.

1. List all the possible policies. [4 pts.]
2. Show the equations representing the optimal value functions for all states, including $V^{*}\left(s_{0}\right), V^{*}\left(s_{1}\right), V^{*}\left(s_{2}\right)$ and $V^{*}\left(s_{3}\right)$. [6 pts .]

For example, for $V^{*}\left(s_{0}\right)$, the representation is:

$$
\begin{equation*}
V^{*}\left(s_{0}\right)=\max _{a \in\left\{a_{1}, a_{2}\right\}} 0+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}\right)=\gamma \max \left\{V^{*}\left(s_{1}\right), V^{*}\left(s_{2}\right)\right\} \tag{1}
\end{equation*}
$$

3. Is there a value for p such that for all $\gamma \in(0,1)$ and $q \in[0,1], \pi^{*}\left(s_{0}\right)=a_{2}$? Explain. [5 pts.]
4. Is there a value for q such that for all $\gamma \in(0,1)$ and $p \in[0,1], \pi^{*}\left(s_{0}\right)=a_{1}$? Explain. [5 pts.]

Problem 2: Fixed Point [25 pts.]

Recall from lecture that the optimal value function can be written as:

$$
V^{*}\left(s_{t}\right)=\max _{a} \mathbb{E}\left[r\left(s_{t}, a\right)+\gamma V^{*}\left(s_{t+1}\right) \mid a_{t}=a\right] .
$$

Let $r(s, a)$ denotes the reward received of choosing action a on state s and $P\left(s^{\prime} \mid s, a\right)$ be the probability of transiting to state s^{\prime} when choosing action a on state s . The bellman operator can be defined as $B: \mathbb{R}^{S} \longrightarrow$ \mathbb{R}^{S}, where

$$
(B V)(s)=\max _{a} r(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)
$$

In this problem, we are going to show a few properties about the bellman operator. We'll see that if we know the transition function $P\left(s^{\prime} \mid s, a\right)$ and the reward function $r(s, a)$, then repeating this operator on our value function helps recover the optimal value function, in other words, we want to show that value iteration will converge to a unique fixed point V regardless of the starting point. An element V is a fixed point for an operator B (in this case the Bellman operator) if performance of B on V returns V, i.e., $B V=V$.

1. Contraction Property [5 pts.]

Prove that the Bellman operator B is a contraction operator for $\gamma \in(0,1)$ with respect to the infinity norm $\|\cdot\|_{\infty}$ (you may want to search up the definition for this). Specifically, we want to prove that

$$
\begin{equation*}
\left\|B V-B V^{\prime}\right\|_{\infty} \leq \gamma\left\|V-V^{\prime}\right\|_{\infty} \tag{2}
\end{equation*}
$$

for any two value functions V and V^{\prime}, meaning if we apply it to two different value functions, the distance between value functions (in the ∞ norm) shrinks after application of the operator to each element.

2. Lead-up Proof [10 pts.]

According to the above contraction property, there are some helpful lead-up proofs for you to obtain final proof of the fixed point (i.e., optimal value function).
2.1. Let's define $\left\|V_{n+1}-V_{n}\right\|_{\infty}=\left\|B V_{n}-B V_{n-1}\right\|_{\infty}$, please prove by induction that $\| V_{n+1}-$ $V_{n}\left\|_{\infty} \leq \gamma^{n}\right\| V_{1}-V_{0} \|_{\infty}$.
2.2 Prove that for any $c>0,\left\|V_{n+c}-V_{n}\right\|_{\infty} \leq \frac{\gamma^{n}}{1-\gamma}\left\|V_{1}-V_{0}\right\|_{\infty}$

3. Fixed Point [5 pts.]

A Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. Formally a sequence $\left\{a_{n}\right\}$ in metric space X with distance metric d is a Cauchy sequence if given an $\epsilon>0$ there exists k such that if $\mathrm{m}, \mathrm{n}>\mathrm{k}$ then $d\left(a_{m}, a_{n}\right)<\epsilon$. Real Cauchy sequences are convergent. Using this information about Cauchy sequences, argue that the sequence V_{0}, V_{1}, \ldots is a Cauchy sequence and is therefore convergent and must converge to some element V and this V is a fixed point.

4. Uniqueness [5 pts.]

Show that this fixed point is unique.

Problem 3: Practice of bandit problem [55 pts.]

Consider a two-armed bandit problem, where each arm's distribution is Bernoulli. Consider the following three problem variants, with respective Bernoulli distribution parameters specified for each arm:

Problem	Arm 1	Arm 2
P1	0.8	0.6
P2	0.8	0.7
P3	0.55	0.45
P4	0.5	0.5

Write a Python program to simulate each of the above bandit problems. Specifically, for each problem, you need to do:

1. Choose the horizon n as 10000 .
2. For each algorithm, repeat the experiment 100 times.
3. Store the number of times an algorithm plays the optimal arm, for each round $t=1, \cdots, n$.
4. Store the regret in each round $t=1, \cdots, n$.
5. Plot the percentage of optimal arm played and regret against the rounds $t=1, \cdots, n$,
6. For each plot, add standard error bars.

Do the above for the following bandit algorithms:

1. Explore-then-Commit (ETC) algorithm [20 pts.]

The explore-then-commit (ETC) algorithm with exploration parameter k chosen optimally so that the gapdependent regret is minimum (this choice for k would require information about underlying gap).

2. ETC algorithm with a heuristic [20 pts.]

The ETC algorithm with a heuristic choice for exploration parameter k. Try different values for k and summarize your findings, say by tabulating regret for different k.

3. Interpretation and summarization [15 pts .]

Interpret the numerical results and submit your conclusions. In particular, discuss the following:

1. Explain the results obtained for ETC with optimal k and correlate the results to the theoretical findings.
2. Explain the results obtained for ETC with a heuristic choice for k. In particular, how does ETC with a k that is far from the optimal, perform?

Note that you need to submit: 1) Source code, preferably one that is readable with some comments; 2) Plots/tabulated results in a document (or you could submit printouts of plots); 3) Discussion of the results either hand-written or typed-up.

