
Lecture 9 - Python Class

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

CSC-1004: Computational Laboratory Using Java
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-csc-1004/csc_1004.html


Python Classes/Objects

Python is an object-oriented programming language.

• Almost everything in Python is an object, with its properties and methods.

• A Class is like an object constructor, or a "blueprint" for creating objects.

2 / 6



Python Classes/Objects

Python is an object-oriented programming language.

• To create a class, use the keyword class:

class MyClass:

x = 5

• We can use the class named MyClass to create objects:

p1 = MyClass()

print(p1.x)

2 / 6



Python Classes/Objects
Python is an object-oriented programming language.

• All classes have a function called __init__(), which is always executed when the

class is being initiated.

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

p1 = Person("John", 36)

print(p1.name)

print(p1.age)
2 / 6



Python Classes/Objects
Python is an object-oriented programming language.

• The self parameter is a reference to the current instance of the class, and is used

to access variables that belongs to the class.

class Person:

def__init__(mysillyobject, name, age):

mysillyobject.name = name

mysillyobject.age = age

def myfunc(self):

print("Hello my name is " + self.name)

p1 = Person("John", 36)

p1.myfunc()
2 / 6



Python Classes/Objects
Python is an object-oriented programming language.

• The __str__() function controls what should be returned when the class object

is represented as a string.

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

def __str__(self):

return f"self.name(self.age)"

p1 = Person("John", 36)

print(p1)
2 / 6



Python Classes/Objects

Python is an object-oriented programming language.

• You can modify properties on objects like this:

p1.age = 40

• You can delete properties on objects by using the del keyword:

del p1.age

• You can delete objects by using the del keyword:

del p1

2 / 6



Python Inheritance

Inheritance allows us to define a class that inherits all the methods and properties from

another class.

• Parent class is the class being inherited from, also called base class.

• Child class is the class that inherits from another class, also called derived class.

3 / 6



Python Inheritance

Create a Parent Class.

class Person:

def __init__(self, fname, lname):

self.firstname = fname

self.lastname = lname

def printname(self):

print(self.firstname, self.lastname)

x = Person("John", "Doe")

x.printname()

3 / 6



Python Inheritance

Create a Child Class.

class Student(Person):

def __init__(self, fname, lname):

super().__init__(fname, lname)

• Add the __init__() function to the child class.

• Use the super() function to make the child class inherit all the methods and

properties from its parent.

3 / 6



Python Inheritance

Add properties to the child class.

class Student(Person):

def __init__(self, fname, lname):

super().__init__(fname, lname)

self.graduationyear = 2019

x = Student("Mike", "Olsen", 2019)

• Add a property called graduationyear to the Student class.

3 / 6



Python Inheritance

Add methods to the child class.

class Student(Person):

def __init__(self, fname, lname):

super().__init__(fname, lname)

self.graduationyear = 2019

def welcome(self):

print("Welcome", self.firstname, self.lastname, self.graduationyear)

• Add a property called graduationyear to the Student class.

3 / 6



Python Try Except

• The try block lets you test a block of code for errors.

• The except block lets you handle the error.

• The else block lets you execute code when there is no error.

• The finally block lets you execute code, regardless of the result of the try- and

except blocks.

4 / 6



Python Try Except

Exception Handling. When an error occurs, or exception as we call it, Python will

normally stop and generate an error message.

f = open("demofile.txt")

try:

f.write("Lorum Ipsum")

except:

print("Something went wrong when writing to the file")

finally:

f.close()

4 / 6



Python Random

The random module gives access to various useful functions one of them being able to

generate random integers, which is randint().

import random

r1 = random.randint(0, 10)

print("Random number between 0 and 10 is % d" % (r1))

"Why we need random numbers?"

Generate the location of foods in the game snake.

5 / 6



Question and Answering (Q&A)

6 / 6


