Lecture 7 - Java Graphical User Interface (GUI): JavaFX - Part IV

Guiliang Liu
The Chinese University of Hong Kong, Shenzhen

CSC-1004: Computational Laboratory Using Java
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-csc-1004/csc_1004.html

Events in JavaFX

An event in JavaFX represents an action triggered by user interaction, such as:
e Clicking a button.
® Pressing a key.
® Moving the mouse.
® Resizing a window.
® Dragging an object.
Each event is represented by an instance of the Event class or its subclasses.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

2/6

Events in JavaFX

The JavaFX event model consists of:

® Event Source: The component generating the event (e.g., Button, TextField).

Event Object: Contains information about the event (e.g., MouseEvent,

KeyEvent).

Event Target: The node receiving the event.

Event Handler: A method that processes the event.

FEF XK FEEID

o)
Q2
&.}:%,‘.% The Chinese University of Hong Kong, Shenzhen

3

2/6

Events in JavaFX

Assume we have an application that includes a Circle, along with Stop and Play

buttons, all grouped together using an object, as shown below.

EventHandler example - o x

If you click on the play button, the event source node will be

p@’ button, and the
"“f’ bd k % (€3 i”l
The Chinese University of Hong Kong, Shenzhen

object will be the MouseEvent, and the target will be the cirgls

2/6

JavaFX Event Handling: Convenient Methods

e JavaFX provides convenient methods to handle events (create and register event

handlers to respond to KeyEvent, MouseEvent, Action Event, and Drop Events).

® Node class contains various Event Handler properties which can be set to the

user-defined Event Handlers using the setter methods defined in the class.

e Setting the EventHandler properties of the Node class to user-defined event

handlers will register the handlers to receive the corresponding event types.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

PG
ety

3

3/6

JavaFX Event Handling: Convenient Methods
The EventHandler registered with the setOnAction() method is called when the Play

button is clicked and it is set to rotate the rectangle on the screen.

public void start(Stage primaryStage) {

/| Creating Rectangle
Rectangle rect = new Rectangle(100,100,120,120);

/| Setting Stroke and colour for the rectangle
rect.setFill(Color.RED);

//Setting properties for the play button
btn.setText("Play");
btn.setTranslateX(100);
btn.setTranslateY(250);

J/defining the convenience method to register the event
btn.setOnAction(new EventHandler<ActionEvent>() {

JHandling event for the pause button click event
btn1.setO i

@Override

public void handle(ActionEvent arg0) {
/] TODO Auto-generated method stub
rotate.pause();

rect.setStroke(Color.BLACK); public void handle(ActionEvent event) { }
p N
// Instantiating RotateTransition class rotate.play();
RotateTransition rotate = new RotateTransition(); } .
n; /[Configuring group and scene

J/Setting properties for the Rotate Transition class
rotate.setAutoReverse(false);
rotate.setByAngle(360);
rotate.setCycleCount(500);
rotate.setDuration(Duration.millis(500));

rotate.setNode(rect);

/[Creating the play button

Button btn = new Button();

//Creating the pause button
Button btn1 = new Button("Pause");

//Setting propertied for the pause button
btnl.setTranslateX(160);
btnl.setTranslateY(250);

Group root = new Group();
Scene scene = new Scene(root, 400, 350);
root.getChildren().addAll(btn,rect,btn1);
primaryStage.setScene(scene);
primaryStage.setTitle("Handling Events");

l primaryStage.show();

o

0{

g, Shenzhen

3/6

JavaFX Event Handling: Convenient Methods
The setOnKeyEvent() method can register the Event Handler logic for the key event.

E.g., the key pressed in the first text field is set as the text in the second text field.

package application;

import javafx.application.Application;

import javafx.event.EventHandler;

import javafx.scene.Group;

import javafx.scene.Scene;

import javafx.scene.control.TextField;

import javafx.scene.input KeyEvent;

import javafx.scene.paint Color;

import javafx.stage.Stage;

public class JavaFX_KeyEvent extends Application{

@Override
public void start(Stage primaryStage) throws Exception {

/I TODO Auto-generated method stub

J[Creating TextFields and setting position for them
TextField tf1 = new TextField();

TextField tf2 = new TextField ();
tf1.setTranslateX(100);

tf1.setTranslateY (100);

tf2.setTranslateX(300);

tf2.setTranslateY (100);

/MHandling KeyEvent for textfield 1 Handling KeyEvent - 8 x
tf1.set0 Y 04
@Override
public void handle(KeyEvent key) { (4 Key Pressed : s
J/ TODO Auto-generated method stub
tf2.setText("Key Pressed :"+" "+key.getText());

i

Jfsetting group and scene
Group root = new Group();
root.getChildren().addAll(tf2,tf1);

Scene scene = new Scene(root,500,200,ColorWHEAT);
primaryStage. setScene(scene);

primaryStage. setTitle("Handling KeyEvent");
primaryStage.show();

}

public static void main(String[] args) {

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

launch(args);

3/6

JavaFX Event Handling: Convenient Methods

JavaFX provides different types of event classes:

Event Type | Description Example
P — Triggered by. button clicks, button.setOnAction(event ->
menu selections, etc. {...D)
Occurs when the mouse is node.setOnMouseClicked(event ->
MouseEvent .
moved, clicked, or dragged. | {...})
KeyEvent Triggered when a key is scene.setOnKeyPressed(event ->
pressed or released. {...D)
Occurs when the user scene.setOnScrollCevent ->
ScrollEvent
scrolls the mouse wheel. {...D)
Used for drag-and-drop node.setOnDragDetected(event ->
DragEvent i
actions. {...D) Lk 2GR

m 1ne Lninese University of Hong Kong, Shenzhen

3/6

JavaFX Event Handling: Event Handlers

e JavaFX facilitates us to use the Event Handlers to handle the events generated

by Keyboard Actions, Mouse Actions, and many more source nodes.
® There can be more than one Event handlers for a single node.

® We can use single handler for more than one node and more than one event type.

FEF XK FEEID

y o The Chinese University of Hong Kong, Shenzhen

4/6

JavaFX Event Handling: Event Handlers

In the following example, same event handler is registered with two different buttons.

The event source is discriminated in the handle() method.

public void start(Stage primaryStage) throws Exception { /[Creating EventHandler J[Creating Group and scene
/I TODO Auto-generated method stub EventHandler<MouseEvent> handler = new EventHandler<MouseEvent>() { CapES o Em)
/[Creating Circle and setting the color and stroke in the circle) '
N N root.getChildren().addAll(c,btn, btn1);
Circle ¢ = new Circle(100,100,50); @0verride
N . Scene scene = new Scene(root,420,300,ColorWHEAT);
c.setFill(Color.GREEN); public void handle(MouseEvent event) { — .
" rimal lage.setScene(scene);
c.setStroke(Color.BLACK); J/ TODO Auto-generated method stub (UEDR R ()

primaryStage.setTitle("EventHandler example");

Jlcreating play button and setting coordinates for the button primaryStage.show();

if(event.getSource()==btn)
Button btn = new Button("Play"); R }

e trans.play(); //animation will be played when the play button is clicked public static void main(String(] args) {

btn.setTranslateY(200); N launch(args);
if(event.getSource()==btn1) ¥

/I creating pause button and setting coordinate for the pause button B)

Button btn1 = new Button(*Pause");
btn1.setTranslateX(175);
btnt.setTranslateY (200);

trans.pause(); //animation will be paused when the pause button is clicked

} P

event.consume();

Ilinstantiating TranslateTransition class to create the animation

trans = new

[lsetting attributes for the TranslateTransition
SE—o—— /IAdding Handler for the play and pause button
rans setByX(200); btn.setonMouseClicked(handler); ong, Shenzhen
rans.setCycleCount(100); btni.setOnMouseClicked(handler);

Pause

trans.setDuration(Duration.millis(500));
trans.setNode(c);

4/6

EventHandlers v.s., EventFilters

In JavaFX, both EventHandlers and EventFilters are used to handle events, but they

serve different purposes in the event-handling mechanism.

Feature

EventHandler

EventFilter

Execution
Phase

Works in the bubbling phase (after
the event reaches the target).

Works in the capturing phase
(before the event reaches the
target).

Method Used

addEventHandler(eventType,
handler)

addEventFilter(eventType,
filter)

Event
Consumption

Can consume the event to stop
further propagation.

Can consume the event to prevent
it from reaching the target node.

Primary Use
Case

Responding to user interactions like
clicks, key presses, etc.

Blocking, modifying, or
intercepting events before they
reach their target.

Execution
Order

Runs after event filters and before
parent nodes in bubbling.

Runs before event handlers,
allowing early interception.

Tk 2RI
Jniversity of Hong Kong, Shenzhen

5/6

Question and Answering (Q&A)

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

6/6

