
Lecture 2 - Java Socket Programming and I/O

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

CSC-1004: Computational Laboratory Using Java
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-csc-1004/csc_1004.html


Introduction
Java Socket programming is used for communication between the applications

running on different machines.

2 / 6



Introduction
In Java Socket programming, the most important elements are:

• Socket and ServerSocket are used for connection-oriented socket programming.
• The client must know the IP Address of the server and port number.

2 / 6



Introduction
One-way client and server

communication: the client

sends a message to the server,

and the server reads the mes-

sage and prints it.

The Socket class communi-

cates client and server.

The ServerSocket class is used

on the server side. Its accept()

method blocks the console un-

til the client is connected.

2 / 6



Example of Java Socket Programming

• Creating Server: 1) We use the 6666 port number for the communication

between the client and server. 2) The accept() method waits for the client. If

clients connect with the given port number, it returns an instance of Socket.

3 / 6



Example of Java Socket Programming

• Creating Client: We pass the IP address or hostname of the Server and a port

number. Here, we are using "localhost" because our server is running on the same

system.

3 / 6



Example of Java Socket Programming

• MyServer.java • MyClient.java

3 / 6



Java I/O (Input and Output)

Basic Knowledge ofJava Input and Output.

• Stream: A stream is a sequence of data. In Java, a stream is composed of bytes.

• OutputStream: Java application uses an output stream to write data to a

destination; it may be a file, an array or sockets.

• InputStream: Java application uses an input stream to read data from a source;

it may be a file, an array, or sockets.

4 / 6



Java I/O (Input and Output)

4 / 6



Java I/O (Input and Output)

Stream Wrappers

What if we want to do more than read and write a mess of bytes or characters?

• The DataInputStream and DataOutputStream Classes are filtered streams that

read or write strings and primitive data types that comprise more than a byte.

• The readUTF() and writeUTF() methods of DataInputStream and

DataOutputStream read and write a Java String of Unicode characters using the

UTF-8 (encoding of Unicode characters commonly used for the transmission and

storage of Unicode text ).

• Use the flush() method to data out the contents.

4 / 6



Java I/O (Input and Output)

4 / 6



Java I/O (Input and Output)

4 / 6



Java I/O (Input and Output)

Character Streams

• The InputStreamReader class bridge the gap between the world of character

streams and the world of byte streams. These are character streams that are

wrapped around an underlying byte stream.

• When we wrap an InputStreamReader around System.in, we object converts the

incoming bytes of System.in to characters using the default encoding scheme.

4 / 6



Java I/O (Input and Output)

Buffered streams

• The BufferedReader class add a data buffer of a specified size to the stream path.

• A buffer can increase efficiency by reducing the number of physical read or write

operations that correspond to read() or write() method calls.

• You can wrap another stream around a buffered stream. BufferedReader gives us

the readLine() method, which we can use to retrieve a full line of text into a String.

4 / 6



Java I/O (Input and Output)

Read data from the console.

Enter your

Nakul Jain

Welcome Nakul Jain

4 / 6



Java I/O (Input and Output)
Read data from console until the user writes stop

Enter data: Nakul

data is: Nakul

Enter data: 12

data is: 12

Enter data: stop

data is: stop

4 / 6



Java I/O (Input and Output)

4 / 6



Example of Java Socket Programming and Data Streaming

• MyServer.java • MyClient.java

5 / 6



Question and Answering (Q&A)

6 / 6


