
Lecture 10 - Python Graphical User Interface(GUI)

Guiliang Liu

The Chinese University of Hong Kong, Shenzhen

CSC-1004: Computational Laboratory Using Java
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-csc-1004/csc_1004.html


Introduction to Tkinter

Tkinter is the inbuilt Python module that is used to create GUI applications. It is one

of the most commonly used modules for creating GUI applications in Python.

• Simple and easy to work with.

• No installation.

• Object-oriented interface.

2 / 7



Introduction to Tkinter

Fundamental structure of tkinter program:

Widgets in Tkinter are the elements of the GUI application that provide various controls

to users to interact with the application.

2 / 7



Introduction to Tkinter

An example project of tkinter:

from tkinter import *

root = Tk()

frame = Frame(root)

frame.pack()

button = Button(frame, text =’Geek’)

button.pack()

root.mainloop()

1. Create root window.

2. Create frame inside root window and

call geometry method.

3. Create button inside frame which is

inside root.

4. Call Tkinter event loop.

2 / 7



Introduction to Tkinter

An example project of tkinter:

2 / 7



Widgets in Tkinter
Widgets in Tkinter are the elements of the GUI application that provide various controls

to users to interact with the application. The core widget classes are:

3 / 7



Widgets in Tkinter

Geometry Management. Creating a new widget doesn’t mean that it will appear on

the screen. To display it, we need to call a special method:

• pack(): The Pack geometry manager packs widgets in rows or columns.

• grid(): The Grid geometry manager puts the widgets in a 2-dimensional table.

• place(): The Place geometry manager allows you explicitly set the position and

size of a window, either in absolute terms, or relative to another window.

3 / 7



Widgets in Tkinter

3 / 7



Widgets in Tkinter

The parameters of the "Pack()" method.

3 / 7



Widgets in Tkinter
The parameters of the "Grid()" method.

3 / 7



Widgets in Tkinter

The parameters of the "Place()" method.

3 / 7



Canvas Widget in Tkinter

The Canvas widget lets us display various graphics on the application. It can be used to

draw simple shapes to complicated graphs. We can also display various kinds of custom

widgets according to our needs.

C = Canvas(root, height, width, bd, bg, ..)

• root = root window.

• height = height of the canvas widget.

• width = width of the canvas widget.

• bg = background colour for canvas.

• bd = border of the canvas window.

4 / 7



Canvas Widget in Tkinter

Some common drawing methods:

from tkinter import *

root = Tk()

C = Canvas(root, bg="yellow", height=250, width=300)

line = C.create_line(108, 120, 320, 40, fill="green")

arc = C.create_arc(180, 150, 80, 210, start=0, extent=220, fill="red")

oval = C.create_rectangle(80, 30, 140, 150,fill="blue")

C.pack()

mainloop()

4 / 7



Canvas Widget in Tkinter

4 / 7



Canvas Widget in Tkinter
from tkinter import *

root = Tk()

canvas = Canvas(root, bg="black", height=250, width=300)

cell_size = 20

snake = [(100, 100), (80, 100), (60, 100), (40, 100), (40, 80)]

food = (40, 40)

for x, y in snake:

canvas.create_rectangle(x, y, x + cell_size, y + cell_size, fill=’green’)

canvas.create_rectangle(food[0], food[1], food[0] + cell_size, food[1] + cell_size,

fill=’red’)

canvas.pack()

mainloop()
4 / 7



Canvas Widget in Tkinter

4 / 7



Binding function in Tkinter

The binding function is used to deal with the events. We can:

• bind Python’s functions and methods to an event.

• bind Python’s functions to any particular widget.

5 / 7



Binding function in Tkinter
Binding mouse movement with tkinter Frame.

from tkinter import *

from tkinter.ttk import *

root = Tk()

root.geometry(’200x100’)

def enter(event):

print(’Button-2 pressed at x = % d, y = % d’%(event.x, event.y))

frame1 = Frame(root, height = 100, width = 200)

frame1.bind(’<Enter>’, enter)

frame1.pack()

mainloop()
5 / 7



Binding function in Tkinter
Binding Mouse buttons with Tkinter Frame.

from tkinter import *

from tkinter.ttk import *

root = Tk()

root.geometry(’200x100’)

def double_click(event):

print(’Double clicked at x = % d, y = % d’%(event.x, event.y))

frame1 = Frame(root, height = 100, width = 200)

frame1.bind(’<Double 1>’, double_click)

frame1.pack()

mainloop()
5 / 7



Binding function in Tkinter

What’s the difference between events "<Double 1>", "<Double-Button-1>" and

"<Double-Button>"?

<Double 1> and <Double-Button-1> capture only the left click.

<Double-Button> captures both all the (left and right) clicks.

5 / 7



Binding function in Tkinter
Binding keyboard buttons with the root window.

from tkinter import *

from tkinter.ttk import *

def key_press(event):

if event.keysym in [’Left’, ’Right’, ’Up’, ’Down’]:

direction = event.keysym

print(direction, ’is pressed’)

root = Tk()

root.geometry(’200x100’)

root.bind(’<Key>’, key_press)

mainloop()
5 / 7



after() and destroy() functions in Tkinter

Tkinter provides a variety of built-in functions to develop interactive and featured GUI.

• The after() function is also a universal function that can be used directly on the

root as well as with other widgets. The function will be run after ms milliseconds.

after(parent, ms, function = None, *args)

• The destroy() function is a universal widget method i.e we can use this method

with any of the available widgets as well as with the main tkinter window.

widget_object = Widget(parent, command = widget_class_object.destroy)

6 / 7



after() and destroy() functions in Tkinter
from tkinter import Tk, mainloop, TOP

from tkinter.ttk import Button

from time import time

root = Tk()

button = Button(root, text = ’Geeks’)

button.pack(side = TOP, pady = 5)

print(’Running...’)

start = time()

root.after(5000, root.destroy)

mainloop()

end = time()

print(’Destroyed after % d seconds’ % (end-start))
6 / 7



after() and destroy() functions in Tkinter

What’s the role of .after() and .destroy() functions in the Snanke Game?

A short example:
def update_ui():

snake = [(snake[0][0] + cell_size, snake[0][1])] + snake[:-1]

canvas.delete(’all’)

for x, y in snake:

canvas.create_rectangle(x, y, x + cell_size, y + cell_size, fill=’green’)

root.after(500, update_ui)

root.after(500, update_ui)

Check the complete example code named "after_snake_canvas_example.py"!

6 / 7



after() and destroy() functions in Tkinter

Can we replace ".after()" with other functions? for example, the "while" loop and the

"time.sleep()" function

• Tkinter’s GUI runs in a single thread, and long-running operations can cause the

GUI to become unresponsive.

• Using .after() allows the Tkinter main loop (mainloop()) to continue running and

keep the interface responsive by processing events and updating the GUI between

the scheduled calls.

6 / 7



after() and destroy() functions in Tkinter

Replacing .after() with a while loop is generally not advisable for several reasons:

• Blocking the Main Loop: A while loop in the main thread of a Tkinter application

will block the main event loop (mainloop()), which is responsible for processing

user interactions, drawing the GUI, and handling events.

• Lack of Proper Timing: Implementing a timing mechanism in a while loop (e.g.,

using time.sleep()) to mimic .after() would still block the thread during the sleep

time and won’t allow for GUI updates or event processing.

6 / 7



Question and Answering (Q&A)

7 / 7


