Lecture 10 - Python Graphical User Interface(GUI)

Guiliang Liu
The Chinese University of Hong Kong, Shenzhen

CSC-1004: Computational Laboratory Using Java
Course Page: [Click]

https://guiliang.github.io/courses/cuhk-csc-1004/csc_1004.html

Introduction to Tkinter

Tkinter is the inbuilt Python module that is used to create GUI applications. It is one

of the most commonly used modules for creating GUI applications in Python.
® Simple and easy to work with.
® No installation.

® Object-oriented interface.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

2/7

Introduction to Tkinter
Fundamental structure of tkinter program:
Importing Tkinter modules
Creating the main window for GUI app
Adding widgets to the app

Enter the Main event Loop

Widgets in Tkinter are the elements of the GUI application that provide various controls

to users to interact with the application. AR L X & GRID
2 The Chinese University of Hong Kong, Shenzhen

2/7

Introduction to Tkinter

An example project of tkinter:

from tkinter import *

root = Tk()

frame = Frame(root)

frame.pack()

button = Button(frame, text ='Geek’)
button.pack()

root.mainloop()

. Create root window.

. Create frame inside root window and

call geometry method.

. Create button inside frame which is

inside root.

. Call Tkinter event loop.

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

EH
cIrren

3

2/7

Introduction to Tkinter

An example project of tkinter:

F & T XK F CRID
The Chinese University of Hong Kong, Shenzhen

2/7

Widgets in Tkinter

Widgets in Tkinter are the elements of the GUI application that provide various controls

to users to interact with the application. The core widget classes are:

Radiobutton

Button

Listbox «—— Wldgets

Message J
Menubutton Menu Entry

I Checkbutton

Canvas

Label

Frame

FEF XK FEEID

B The Chinese University of Hong Kong, Shenzhen

3/7

Widgets in Tkinter

Geometry Management. Creating a new widget doesn't mean that it will appear on

the screen. To display it, we need to call a special method:
® pack(): The Pack geometry manager packs widgets in rows or columns.
e grid(): The Grid geometry manager puts the widgets in a 2-dimensional table.

® place(): The Place geometry manager allows you explicitly set the position and

size of a window, either in absolute terms, or relative to another window.

B LK EGERID
The Chinese University of Hong Kong, Shenzhen

EH
cIrren

3

3/7

Widgets in Tkinter

Feature .packQ .gridQ .place()
Automatically Arranges widgets ina | Places widgets at
L. arranges widgets in a rid-like structure specific x,
Description 9 2 2 R i X v .
sequence (top, using rows and coordinates for precise
bottom, left, right). columns. positioning.
Simple layouts like Pixel-perfect layouts or
stacking widgets Structured layouts like | designs requiring
Best For . .
vertically or forms, tables, or grids. | absolute control over
horizontally. position.
Easiest to use, but Slightly more complex, | Hardest to use due to
Ease of Use | limited for complex but intuitive for manual placement and
layouts. structured layouts. exact positioning.
Widgets auto-adjust Widgets can resize Widgets do not resize
Resizing based on parent size | using sticky and grid | automatically;
Behavior (fill, expand weights for dimensions must be

options).

rows/columns.

explicitly defined.

& RID
ersity of Hong Kong, Shenzhen

3/7

Widgets in Tkinter

The parameters of the "Pack()" method.

Parameter | Description
side Specifies which side of the parent widget to pack against ("top",

"bottom", "left", "right"). Defaultis "top".

. Specifies how the widget should expand to fill the space ("none", "x",
fill oD © T - 7
y", "both"). Default is "none".

Boolean (@ or 1) to indicate whether to expand the widget to fill any extra
expand .

space. Default is .
padx Adds horizontal padding (space) around the widget in pixels. Default is @.
pady Adds vertical padding (space) around the widget in pixels. Default is @.

—C £ CRID

& The Chinese University of Hong Kong, Shenzhen

3/7

Widgets in Tkinter

The parameters of the "Grid()" method.

Parameter Description

row Specifies the row number in the grid.
column Specifies the column number in the grid.
rowspan Number of rows the widget should span.

columnspan | Number of columns the widget should span.

sticky Defines how the widget should stick to the cell (e.g., N, S, E, W).
padx Adds horizontal padding around the widget.
pady Adds vertical padding around the widget. CEGRID

ersity of Hong Kong, Shenzhen

3/7

Widgets in Tkinter

The parameters of the "Place()" method.

Parameter | Description

X X-coordinate for widget placement (in pixels).

y Y-coordinate for widget placement (in pixels).

relx Relative horizontal position (0.0 to 1.0, relative to parent width).
rely Relative vertical position (0.0 to 1.0, relative to parent height).
width Absolute width of the widget (in pixels).

height Absolute height of the widget (in pixels).

7 s T XK R
The Chinese University of Hong Kong, Shenzhen

3/7

Canvas Widget in Tkinter

The Canvas widget lets us display various graphics on the application. It can be used to
draw simple shapes to complicated graphs. We can also display various kinds of custom

widgets according to our needs.

C = Canvas(root, height, width, bd, bg, ..)

® root = root window.

height = height of the canvas widget.

width = width of the canvas widget.

bg = background colour for canvas.

G m-ﬁ!,'-

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

bd = border of the canvas window.

4/7

Canvas Widget in Tkinter

Some common drawing methods:

from tkinter import *

root = Tk()

C = Canvas(root, bg="yellow", height=250, width=300)

line = C.create line(108, 120, 320, 40, fill="green")

arc = C.create__arc(180, 150, 80, 210, start=0, extent=220, fill="red")
oval = C.create rectangle(80, 30, 140, 150,fill="blue")

C.pack()

mainloop()

Bk Lk CRID
5 The Chinese University of Hong Kong, Shenzhen

4/7

Canvas Widget in Tkinter

[] tk

B) ==+ x5k

The Chinese University of Hong Kong, Shenzhen

PEH
ey

4/7

Canvas Widget in Tkinter

from tkinter import *
root = Tk()
canvas = Canvas(root, bg="black", height=250, width=300)
cell size =20
snake = [(100, 100), (80, 100), (60, 100), (40, 100), (40, 80)]
food = (40, 40)
for x, y in snake:
canvas.create rectangle(x, y, x + cell _size, y + cell size, fill="green’)
canvas.create _rectangle(food[0], food[l], food[0] + cell size, food[l] + cell size,
fill="red")

canvas.pack()

B #2vx k%09
Se

3

By

J2 The Chinese University of Hong Kong, She:

mainloop()

4/7

Canvas Widget in Tkinter

HEP K FEEID
> The Chinese University of Hong Kong, Shenzhen

4/7

Binding function in Tkinter

The binding function is used to deal with the events. We can:
® bind Python's functions and methods to an event.

¢ bind Python's functions to any particular widget.

FEF XK FEEID

e The Chinese University of Hong Kong, Shenzhen

5/7

Binding function in Tkinter

Binding mouse movement with tkinter Frame.

from tkinter import *
from tkinter.ttk import *
root = Tk()
root.geometry('200x100")
def enter(event):
print('Button-2 pressed at x = % d, y = % d'%(event.x, event.y))
framel = Frame(root, height = 100, width = 200)
framel.bind('<Enter>’, enter)

framel.pack() %P Xk £ GRID

mainloop()

$e -, The Chinese University of Hong Kong, She

5/7

Binding function in Tkinter

Binding Mouse buttons with Tkinter Frame.

from tkinter import *
from tkinter.ttk import *
root = Tk()
root.geometry('200x100")
def double click(event):

print('Double clicked at x = % d, y = % d'%(event.x, event.y))

framel = Frame(root, height = 100, width = 200)
framel.bind('<Double 1>, double click)
framel.pack()

mainloop()

FEF XK FEEID

$e -, The Chinese University of Hong Kong, She

5/7

Binding function in Tkinter

What's the difference between events "<Double 1>", "<Double-Button-1>" and
"<Double-Button>"?

<Double 1> and <Double-Button-1> capture only the left click.
<Double-Button> captures both all the (left and right) clicks.

FEF XK FEEID

o The Chinese University of Hong Kong, Shenzhen

5/7

Binding function in Tkinter

Binding keyboard buttons with the root window.

from tkinter import *
from tkinter.ttk import *
def key press(event):
if event.keysym in ['Left’, 'Right’, "Up’, 'Down’]:
direction = event.keysym
print(direction, 'is pressed’)
root = Tk()
root.geometry('200x100")

root.bind('<Key>', key press) £ %P LK E GRS

$e -, The Chinese University of Hong Kong, Shenzhen

mainloop()

5/7

after() and destroy() functions in Tkinter

Tkinter provides a variety of built-in functions to develop interactive and featured GUI.

¢ The after() function is also a universal function that can be used directly on the

root as well as with other widgets. The function will be run after ms milliseconds.

’after(parent, ms, function = None, *args) ‘

® The destroy() function is a universal widget method i.e we can use this method

with any of the available widgets as well as with the main tkinter window.

’widget_object = Widget(parent, command = widget class object.destroy) ‘

EH
cIrren

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

3

6/7

after() and destroy() functions in Tkinter

from tkinter import Tk, mainloop, TOP
from tkinter.ttk import Button

from time import time

root = Tk()

button = Button(root, text = 'Geeks')
button.pack(side = TOP, pady = 5)
print('Running...")

start = time()

root.after(5000, root.destroy)
mainloop()

end = time()

FEF XK FERID

0 -, The Chinese University gf Hong Kong, Shenzhen

print('Destroyed after % d seconds’ % (end-start))

6/7

after() and destroy() functions in Tkinter

What's the role of .after() and .destroy() functions in the Snanke Game?

A short example:
def update ui():

snake = [(snake[0][0] + cell size, snake[0][1])] + snake[:-1]

canvas.delete('all’)

for x, y in snake:

canvas.create rectangle(x, y, x + cell _size, y + cell _size, fill="green’)

root.after(500, update ui)
root.after(500, update _ui)

4 2 A o Kk 2 (R 3
o &

g -, The Chi University of Hong Kong, Shenzhen
“example.py ™l

6/7

Check the complete example code named "after snake canva

after() and destroy() functions in Tkinter

Can we replace ".after()" with other functions? for example, the "while" loop and the

"time.sleep()" function

e Tkinter's GUI runs in a single thread, and long-running operations can cause the

GUI to become unresponsive.

e Using .after() allows the Tkinter main loop (mainloop()) to continue running and

keep the interface responsive by processing events and updating the GUI between

the scheduled calls.

EH
cIrren

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

3

6/7

after() and destroy() functions in Tkinter

Replacing .after() with a while loop is generally not advisable for several reasons:

e Blocking the Main Loop: A while loop in the main thread of a Tkinter application
will block the main event loop (mainloop()), which is responsible for processing

user interactions, drawing the GUI, and handling events.

® Lack of Proper Timing: Implementing a timing mechanism in a while loop (e.g.,
using time.sleep()) to mimic .after() would still block the thread during the sleep

time and won't allow for GUI updates or event processing.

G m-ﬁ!,'-

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

6/7

Question and Answering (Q&A)

FEF XK FEEID

The Chinese University of Hong Kong, Shenzhen

7/7

